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Quantifying Errors in Spectral Estimates of HRV Due
to Beat Replacement and Resampling

Gari D. Clifford*, Member, IEEE, and Lionel Tarassenko

Abstract—Spectral estimates of heart rate variability (HRV)
often involve the use of techniques such as the fast Fourier trans-
form (FFT), which require an evenly sampled time series. HRYV is
calculated from the variations in the beat-to-beat (RR) interval
timing of the cardiac cycle which are inherently irregularly spaced
in time. In order to produce an evenly sampled time series prior to
FFT-based spectral estimation, linear or cubic spline resampling
is usually employed. In this paper, by using a realistic artificial RR
interval generator, interpolation and resampling is shown to result
in consistent over-estimations of the power spectral density (PSD)
compared with the theoretical solution. The Lomb-Scargle (LS)
periodogram, a more appropriate spectral estimation technique
for unevenly sampled time series that uses only the original data,
is shown to provide a superior PSD estimate. Ectopy removal or
replacement is shown to be essential regardless of the spectral
estimation technique. Resampling and phantom beat replacement
is shown to decrease the accuracy of PSD estimation, even at low
levels of ectopy or artefact. A linear relationship between the
frequency of ectopy/artefact and the error (mean and variance) of
the PSD estimate is demonstrated. Comparisons of PSD estimation
techniques performed on real RR interval data during minimally
active segments (sleep) demonstrate that the LS periodogram
provides a less noisy spectral estimate of HRV.

Index Terms—Beat replacement, fast Fourier transform, heart
rate variability, interpolation, irregular sampling, Lomb peri-
odogram, resampling, sleep, uneven sampling.

I. INTRODUCTION

HE VARIATION in the timing between beats of the

cardiac cycle, known as heart rate variability (HRV),
has been shown to be an indicator of health [1]-[3]. Since
spectral analysis was first introduced into the evaluation of
HRV in 1969 [4], [5], a large body of literature has arisen
concerning this topic. However, in 1993, the US Food and
Drug Administration (FDA) withdrew its support of HRV as a
clinical parameter due to a lack of consensus on the efficacy and
applicability of HRV in the literature [6]. Although the Task
Force of the European Society of Cardiology and the North
American Society of Pacing Electrophysiology [3] provided
an extensive overview of HRV estimation methods and the
associated experimental protocols in 1996, the FDA has been
reluctant to approve medical devices that calculate HRV unless
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the results are not explicitly used to make a specific medical
diagnosis (e.g., see [7]). Furthermore, the clinical utility of
HRV analysis (together with FDA approval) has only been
demonstrated in very limited circumstances, where the patient
undergoes specific tests (such as paced breathing or the Valsalva
maneuver) and the data is analyzed off-line by experts [8].
Such costly and time consuming expert analysis is required
because of the limitations of algorithms in removing all nonsinus
(ectopic) beats and artefacts from the data, together with the
sensitivity of frequency-based HRV metrics to such outliers
in the time series [3]. There is, therefore, a need to develop
a method of automatic HRV analysis, which is insensitive to
such artefacts and abnormal beats.

Standard methods for calculating frequency-based HRV met-
rics from the ECG require accurate beat detection (to locate a
consistent reference point in the sinus beat’s morphology). Be-
fore the time-series of beat-to-beat timing differences can be
calculated, time stamps corresponding to ectopic beats and arte-
facts must be removed. Since ectopic beats often occur instead
of a sinus beat, they are sometimes replaced by a phantom beat
within the expected region for a sinus beat. [Confusingly, this is
sometimes referred to as interpolation. In order to differentiate
this from resampling, the former is referred to as phantom beat
replacement, and the latter as resampling in this paper. Interpo-
lation will be referred to by the specific method (linear or cubic)
through which beat replacement or resampling is performed.]

A time series can then be formed from the successive differ-
ence between the times of occurrence of the remaining beats. If
ectopic beat replacement is not used, the time interval formed
by removing the beat must be discarded, since it does not repre-
sent a time between adjacent beats. The resultant time series is
a list of varying intervals occurring at nonequidistant sampling
times (the time difference between each R-peak on the electro-
cardiogram (ECG) [2]), known as an RR tachogram. Therefore,
in order to perform spectral analysis using the fast Fourier trans-
form (FFT), the time series should be resampled using interpo-
lation at a frequency at least twice the maximum frequency of
the signal (i.e., at least 7 Hz or 210 bpm [2]).

Although more complicated resampling schemes have been
proposed [9], [10], the error this introduces in the evaluation
of the power spectral density (PSD) has not been widely doc-
umented [11], [12]. The action of replacing unevenly sampled
data (the RR intervals) with evenly sampled data requires the
assumption of some underlying model which describes the re-
lationship between each point. Stable schemes (such as linear
interpolation) lead to coarse approximations to the underlying
nonlinear behavior, and more complex schemes are prone to in-
stabilities and fail to capture the full underlying dynamics of the
signal. (See [23] for a more detailed discussion). Furthermore,
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resampling the RR tachogram at a frequency (f;) below the
original ECG (fecq) from which it is derived effectively shifts
the fiducial point by up to 1/2(1/ fs — 1/ fecg) 5. A more appro-
priate method for calculating the PSD of an unevenly sampled
signal is the Lomb-Scargle (LS) periodogram [13]-[15] since
no explicit data replacement is made (or model assumed) and
the PSD is calculated from only the known values. This paper,
therefore, presents a series of experiments to quantify the errors
in spectral estimates of HRV due to resampling and beat replace-
ment. PSD estimation performance of the LS periodogram on
RR intervals with ectopic beats is compared with that of Welch’s
FFT [16] on the data after linear or cubic spline interpolation.

However, analysis of real data is problematic since the real
(underlying) variability that we are attempting to estimate is
completely unknown. Therefore, in order to ascertain the errors
introduced through spectral estimation, a realistic artificial RR
tachogram is initially used. The spectral methods are then im-
plemented on real data to demonstrate consistency with results
from the artificial scenarios.

II. BACKGROUND AND PREVIOUS WORK

Use of the FFT with linear or cubic spline interpolation
for beat replacement and resampling are considered standard
methods for spectral HRV analysis [2]. Clayton et al. [17]
have demonstrated that FFT and autoregressive (AR) methods
can provide a comparable measure of the low-frequency (LF)
and high-frequency (HF) metrics (the power between 0.04
and 0.15 Hz and between 0.15 and 0.4 Hz, respectively [2])
on linearly resampled 5-min RR tachograms across a patient
population with a wide variety of ages and medical conditions
(ranging from heart transplant patients who have the lowest
known HRV to normals who often exhibit the highest overall
HRYV). AR modeling techniques will, therefore, not be consid-
ered within the scope of this paper.

In addition to the issues raised by the unevenly sampled na-
ture of the RR tachogram, the necessity of removing nonsinus
(ectopic) beats [2] introduces further resampling problems, in-
creasing the variance of the interbeat intervals. Ectopic beats
are routinely removed from the RR tachogram prior to HRV
analysis for two main reasons. First, it is thought that an ec-
topic beat is not generated by the mechanism that is responsible
for the variability in the RR intervals [2]. Second, ectopic beats
often occur substantially earlier (or sometimes later) than when
one would expect a normal beat to occur and are followed (or
preceded) by a prolonged pause [2]. These unusually short RR
intervals create higher than normal frequency components and
lead to a significant rise in the estimation of the HF component
which may distort the true measure of an HRV metric.

Previous comparative spectral HRV studies include Albrecht
and Cohen’s [18] experiments to compare the effects of different
methods of phantom beat replacement on the FFT of (linearly)
resampled tachograms. They found that beat replacement using
linear interpolation produced a more accurate PSD estimate than
using a predictive autocorrelation method. Birkett et al. [19]
compared two methods of computing HRV spectra for conges-
tive heart failure patients; in the first method, linear and cubic
spline interpolation [20] was used to replace ectopic beats. In
the second method, segments with ectopy were discarded. They

found that HF calculations were unaffected, but LF power was
significantly higher using either interpolation method. In both
methods the same FFT method was employed. In 1994 Lippman
et al. [10] compared ectopy section removal with linear, cubic
and nonlinear predictive interpolation as well as the null case
(no ectopic removal). They concluded that ectopy correction is
necessary for HRV analysis but that section removal performs
as well as more complicated interpolation techniques. Their re-
sults indicated that linear and cubic interpolation of removed
sections of the RR tachogram led to significant errors in some
frequency and time domain HRV metrics.

A more appropriate PSD estimation technique for unevenly
sampled data is the LS periodogram [13]-[15] and analysis by
Moody et al. [11], [21], has shown that the LS periodogram
can produce a more accurate estimation of the PSD than FFT
methods for typical RR tachograms. In the even sampling limit,
the LS and FFT methods are equivalent and, therefore, their
performance is directly comparable when the underlying signal
is completely known (such as for an artificial signal).

This paper, therefore, details experiments on the errors in
estimating the LF, HF, LF/HF ratio metrics as evaluated using
the FFT [3] and LS methods with and without phantom beat
replacement and how resampling of the RR tachogram leads
to errors in spectral HRV metrics as a function of the level of
ectopy (or removed data). Results on real data of patients during
sleep (the most quiescent of physiological activities where the
HRV signal is the least random [22]) are then presented to
illustrate how resampling leads to a significantly higher levels
of noise in the HRV estimate.

III. EXPERIMENTAL METHODS
A. The Lomb-Scargle Periodogram

1) Definition: In Scargle’s 1982 paper [14] on unevenly
sampled time correlated data he demonstrated that the gen-
eralized N-point discrete Fourier transform (DFT) of a
time series X (¢;) for arbitrary times ¢; (or uneven sampling
At = tj11—t; # constant) with variance 0% and a mean value
T, leads to the expression for the normalized (LS) periodogram

2
[E(:pl — ) cos(w(t; — 7’))]
> cos?(w(t; — 7))

1

;(%‘ — T)sin(w(t; — T))]
ZsinQ(w(tj - 7))

+ ey

where 7 = tanfl((zj sin(2wt;))/(2w 3, cos(2wt;))). 7 is
an offset that makes Py (w) completely independent of shifting
all the ¢;’s by any constant. This choice of offset makes (1) ex-
actly the solution that one would obtain if the harmonic content
of a data set, at a given frequency w, was estimated by linear
least-squares fitting to the model z(¢) = A cos(wt)+ B sin(wt).
Thus, the LS periodogram weights the data on a per point basis
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instead of weighting the data on a per time interval basis. Note
that in the evenly sampled limit (At = ¢;,1 — t; = constant)
(1) then reduces to the classical periodogram definition [13]. See
[13]-[15] and [23] for mathematical derivations and further de-
tails. The implementation used in this paper is the lomb.c pro-
gram available from Physionet [21].

2) Information Limits: In order to choose a sensible window
size, the requirement of stationarity must be balanced against
the time required resolve the information present. The Euro-
pean and North American Task force on standards in HRV [3]
suggests that the shortest time period over which HRV metrics
should be assessed is 5 min. As a result, the lowest frequency
that can be resolved is 1/300 = 0.003 Hz (just above the lower
limit of the VLF region). Such short segments can, therefore,
only be used to evaluate metrics involving the LF and HF met-
rics. The upper frequency limit of the highest band for HRV
analysis is 0.4 Hz [2]. Since the average time interval for N
points over a time 7" is At,,, = T/N then the average Nyquist
frequency [14] is f. = 1/2At,, = N/2T. Thus, a 5-min
window (7' = 300) with the Nyquist constraint of N/27 > 0.4
for resolving the upper frequency band of the HF region, leads
to a lower limit on IV of 240 beats (an average heart rate of
48 bpm if all beats in a 5-min segment are used). Utilization
of the LS periodogram, therefore, reveals a theoretical lower in-
formation threshold for accepting segments of an RR tachogram
for spectral analysis in the upper HF region. If RR intervals of
at least 1.25 s (corresponding to an instantaneous heart rate of
HR; = 60/RR; = 48 bpm) exist within an RR tachogram,
then frequencies up to 0.4 Hz do exist. However, the accuracy
of the estimates of the higher frequencies is a function of the
number of RR intervals that exist with a value corresponding
to this spectral region. Heart rates with no RR intervals smaller
than 1.25 s (HR; < 48 bpm) can still be analyzed, but there is
no power contribution at 0.4 Hz.

3) A Note on Spectral Leakage and Window Carpentry: The
periodogram for unevenly spaced data allows two different
forms of spectral adjustment: the application of time-domain
(data) windows through weighting the signal at each point,
and adjustment of the locations of the sampling times. The
time points control the power in the window function which
leaks to the Nyquist frequency and beyond (the aliasing), while
the weights control the side-lobes. Since the axes of the RR
tachogram are intricately linked (one is the first difference of
the other), applying a windowing function to the amplitude of
the data, implicitly applies a nonlinear stretching function to the
sample points in time. For an evenly-sampled stationary signal,
this distortion would affect all frequencies equally. Therefore,
the reductions in LF and HF power cancel when calculating
the LF/HF ratio. For an irregularly sampled time series, the
distortion will depend on the distribution of the sampling
irregularity. A windowing function is, therefore, not applied to
the irregularly sampled data. Distortion in the spectral estimate
due to edge effects will not result as long as the start and end
point means and first derivatives do not differ greatly [24].

B. Resampling and Welch’s FFT

Before presenting an unevenly sampled time series to an FFT
algorithm the data must first be resampled to an even time se-

ries. This is achieved using the interpl function in the Matlab
programming envorinment. The algorithm resamples a series of
unevenly sampled RR intervals and their time stamps, using a
user-specified interpolation method onto a regular time axis at a
given frequency. Two commonly employed methods for resam-
pling will be considered; linear and cubic spline interpolation
[2], [20]. Welch’s FFT [16] is implemented using Matlab’s psd
function. Harris [25] has shown that a Hamming window (given
by W(t;) = 0.54 — 0.46 cos(wt;), [ = 0,1,2,...,N —1])
provides an excellent performance for FFT analysis in terms of
spectral leakage, side lobe amplitude, and width of the central
peak (as well as a rapid computational time). This windowing
function is, therefore, applied to all resampled data prior to PSD
estimation via the FFT.

C. Generating Artificial Data

All data analyzed for this paper is artificially generated using
a modification of a method detailed in previous papers by the
authors [26], [27]. Segments of 5 min are used, with known fre-
quency components, LF/HF ratio, average RR interval, and stan-
dard deviation of the RR interval. An artificial RR tachogram is
generated by mixing two sine waves with frequencies at the LF
and HF peaks. Since the LF frequency boundaries are defined
in the literature to be 0.04 and 0.15 Hz [2], and the HF band
lies between 0.15 and 0.4 Hz, the centre frequencies of these
bands, 0.095 and 0.275 Hz, are chosen as the LF and HF fre-
quency components w; /27 and wy, /27 for the synthetic signal.
The respiratory component (at 0.275 Hz) is given an amplitude
of 2.5 bpm and the LF component (at 0.095 Hz) a 2 bpm ampli-
tude. An expression for the HR can then be written as

HR(t) = HR, + A; Sin(wlt) + Ay Sin(wht + ¢) 2)

where, initially, HR, = 60 bpm, w; = 0.095/27, w;, =
0.275/2w, A; = 2 and A;, = 2.5, with no phase difference
(¢ = 0) between w; and wy. The RR tachogram can then be
formed by sampling RR; = 60/ H R; at the required frequency
fs, such that ¢, = n/fs where (n = 1,2,..., N).

To introduce the small departures from stationarity that are
observed in real RR tachograms [3], the two frequencies w; and
wy, are incrementally changed from sample to sample to gen-
erate a Gaussian spread of frequencies each with a standard de-
viation of ¢ = 3. The number of samples for each frequency w;
in the LF and HF bands are (respectively) given by

6—1/2((W(j)—w1)/01)2
V(2ro})

M=

Si(G) = 3 (int)

7=1

Su(i) = S (int)

7=1

_ N (i —en) o)

J@rad)

where (int)|| indicates a standard rounding procedure to pro-
duce an integer number of samples, o5, = (HF;, — HF;)/o,
g = (LF}L - LF[)/O’, HF}L = 04 HZ, HF[ = 0.15 HZ,
LF;, = 0.15 Hz, LF; = 0.04 Hz, and o0 = 3. Note that these
frequency ranges are the upper and lower bounds of the LF and
HF bands [3] and that the centre of these bands are the centre fre-
quencies quoted above, 0.095 Hz and 0.275 Hz. Note also that as
J is incremented from 1 to IV, each corresponding frequency w;

3
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to be generated is assigned a value S;(j) and S (j). These are
the number of samples at which w; remains at that frequency be-
fore being incrementally changed. In this way, the signal quickly
drifts through a range of values free of noncausal jumps. The
LF/HF ratio, is the ratio of the power in each frequency band
is proportional to the square of the amplitude and is therefore,
theoretically (A;/Ax)? = (2/2.5)2 = 0.64 in this example.
Fig. 1(a) is a histogram of the number of samples S; at each
frequency. Fig. 1(b) is a section of the resultant RR tachogram
and Fig. 1(c) is the corresponding PSD.

Ideally the sampling frequency, fs, for generating the RR
tachogram should be as high as possible. It has been demon-
strated that the inaccuracies of R-peak location due to low ECG
sampling frequencies can significantly affect the RR tachogram
and any metrics derived from it [2]. If a patient is suffering from
low HRV (e.g., because they have recently undergone a heart
transplant or are in a state of coma) then the sampling frequency
of the ECG must be higher than normal. Merri et al. [28] and
Abboud et al. [29] have shown that for such patients a sampling
rate of at least 1000 Hz is required. For normal patients how-
ever, a sampling rate of 128 Hz has been found to be accurate
enough to locate the R-peaks and hence compute HRV [3]. To
minimize sampling errors, the artificial RR tachogram [see, (2)]
is generated at 1000 Hz.

To select physiologically plausible RR intervals, the RR
interval at each sample point RR; must match the difference
between the time stamp of this sample and the time of the
previous sample (At). One must, therefore, select a point and
trace along the evenly sampled time series until one discovers
an RR interval equal to the difference between its time stamp
and the time stamp of the first RR interval. If this process
is repeated along the entire length of the signal, a plausible
RR tachogram results.

The following algorithm is used to generate such a time series
(unevenly) sampled from the original time series:

Record the first data point pair, (f;,z1), as
the first time stamp and RR interval pair
(t){,RR,), Then proceed through each sample,

t;, until =, > t; —t|. This defines the second RR
interval (RR, = =z,,t, = t;). Generalize for all
the n = N RR intervals s.t. RR, >t —t,_,.

Fig.

(See
1(b) for a graphical illustration of this
procedure.)

D. Resampling for Spectral Estimation

Although the artificial data is generated at 1000 Hz, to main-
tain accurate locations of the R-peaks, interpolative resampling
of these points to produce an evenly sampled time series prior
to FFT analysis is usually performed at lower rates to reduce
the computational overhead. Most of the papers in the field of
HRYV report on the use of resampling rates between 2 and 4 Hz
(although 1 and 10 Hz have also been used) [2], [3]. Choosing a
resampling rate of 7 Hz for the RR tachogram has the advantage
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Fig. 1. (a) Histogram of the number of samples S; generated by (3)

at each frequency. (b) Section of the resultant RR tachogram using (2).
(c) Corresponding PSD. For graphical clarity, the evenly sampled time series
(t1...t,) has been generated at 7 Hz rather than the 1000 Hz used in the
experiments. The unevenly downsampled points (t;, ¢ > n) are indicated by
circles. See Section III-C.

that HR; < 210 bpm can be resolved (see Section III-A2 on
the average Nyquist criterion). To compute an FFT, the number
of points should be a power of 2. Therefore, 2! points of each
7 Hz resampled segment (corresponding to approximately 293 s
of data) are used in the following analysis.

E. Performance Metrics

In general, in order to assess spectral leakage and estimation
inaccuracies the following parameters may be calculated:

* the amplitude of a particular sidelobe;

¢ the sum of the amplitudes of the sidelobes from the first up
to some specific frequency, such as the Nyquist frequency;

e the amplitude of the peak at the Nyquist frequency (to
measure the aliasing); and

* the width of the main (largest amplitude) peak to measure
the resolution.

However, since the natural sampling of an RR tachogram is in-
herently uneven and only an average Nyquist frequency can be
defined, a meaningful comparison between the DFT and the LS
method for computing spectral components near the Nyquist
frequency cannot be made. A ratio of the power between speci-
fied regions in the spectrum is nevertheless still appropriate and,
thus, the LF/HF ratio makes a useful metric to assess significant
differences (in terms of HRV values) between PSD estimates
using different methods.

To measure the PSD estimation error as a function of the
quantity of missing data, both the mean LF/HF ratio and the
variance of its estimate using a Monte Carlo method (averaging
the results of 1000 randomly seeded realizations of the artificial
RR tachogram) for different levels of beat removal is calculated.
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Fig. 2. Realistic RR tachogram (4) evenly resampled with 7 Hz linear
resampling (- - -). An ectopic beat is chosen to occur at about 55 s. Application
of (5) moves the corresponding RR interval downwards and to the left. The
following RR interval occurs at the same time as before, but has a much
larger magnitude since the previous RR intervals occurred prematurely and,
thus, its location in time has moved. Note that the line of dots which form a
straight line through this segment (54-57 s) corresponds to the 7 Hz resampled
(linearly interpolated) RR tachogram after these two points are removed (see
Section V-B). The broken line represents the resampled waveform before the
points are removed.

IV. EXPERIMENTS

The three methods for estimating the LF/HF ratio from the
RR tachogram under consideration are; the FFT on 7 Hz linear
resampled RR tachogram (FFT};,), the FFT on 7 Hz cubic
spline resampled RR tachogram (FFT.,;) and the LS peri-
odogram without resampling (LS).

A. Adding an Artificial Ectopic Beat

This section deals with how the presence of ectopics and
their removal affect estimates of spectral HRV metrics. Ectopic
beats can be added to the artificial RR tachogram using a simple
procedure. Kamath et al. [30] define ectopic beats (in terms
of timing) as those which have intervals less than or equal to
80% of the previous sinus cycle length. Each datum in the RR
tachogram represents an interval between two beats and the in-
sertion of an ectopic beat, therefore, corresponds to the replace-
ment of 2 data points as follows. The nth and (n + 1)th beats
(where 7 is chosen randomly) are replaced (respectively) by

RR:L = ’yRRnfh
RR/,,, =RR,1 + RR, — RR/,

“4)
®)

where the ectopic beat’s timing is the fraction, ~y, of the pre-
vious RR interval (initially 0.8). Fig. 2 shows an artificial RR
tachogram (generated as in the last section) with the effects of
the ectopic beat added; a sharp dip and then an increase in the
following RR interval because of the prematurity of the ectopic
beat. The two points affected are marked by asterisks ().

Note that the ectopic beat is introduced at random within the
central 50% of the 5-min window. (Artificial ectopy is not intro-
duced in the first or last 75 s of the 5-min window so that win-
dowing does not significantly diminish the effect that the ectopy
will have on the FFT-base estimates).
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Fig. 3. Sinus beats occurring at times to, t1, t3 and t4, and an ectopic beat

occurring at t». The ectopic beat occurs earlier than would be expected for a
sinus rhythm beat and shortens the first associated RR interval (RR; 1) and
lengthens the second (RR;42). To avoid introducing HF components at this
point, a phantom beat can be placed at t/, half way between t; and t3 so that
RR¢;; and RR,;» become RR; ; and RR, ,, both equal to (t3 — 1)/2.

B. Ectopic Beat Removal or Replacement

This section deals with the performance of each PSD estima-
tion algorithm for varying levels of beat removal (the beats are
assumed or defined to be ectopic). The procedure involves re-
moving or replacing a randomly selected RR interval and the
affected following datum (the asterisks in Fig. 2).

In order to evaluate the effect of beat replacement or removal
on the spectral estimation methods being tested in this paper, the
following four LF/HF ratio estimation techniques are compared
for varying levels of ectopy:

(i)  FFT with ectopic beat removal, 7 Hz linear resampling

(ii)) FFT with ectopic beat removal and insertion of
phantom beat, 7 Hz linear resampling

(iii) FFT with ectopic beat removal, 7 Hz cubic spline
resampling

(iv) LS periodogram with ectopic beat removal, no
resampling

Fig. 4 illustrates the data after phantom beat insertion (if ap-
plicable) and resampling, prior to spectral estimation using the
FFT or LS periodogram for each of these four methods for the
data in Fig. 3. A Hamming window is applied to the resampled
data of each 5-min segment.

For method (ii), the ectopic beat is replaced by a phantom
beat, half way between the two adjacent beats. For methods
(i), (iii), and (iv), the two (abnormal) RR intervals associated
with the ectopic beat are removed. The appropriate resam-
pling method is then employed, noting that no resampling is
performed for method (iv). The mean and variance of these
1000 runs are then calculated. This is then repeated, gradually
increasing the number of ectopic beats introduced within the
window, up to the average Nyquist limit (see Section III-A2),
where ARR,,, > 0.8, giving an upper limit at most of 60 RR
intervals (from 30 ectopic beats) being removed out of a total
of 300 beats.
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Fig.4. Re-sampled data (evenly sampled dots) from original RR intervals (+)
using the four methods detailed in the text; (i) Ectopic RR interval removal
followed by 7-Hz linear resampling; (ii) Ectopic beat replacement followed by
7-Hz linear re-sampling; (iii) Ectopic RR interval removal followed by 7-Hz
cubic spline re-sampling; (iv) Ectopic RR interval removal with no re-sampling.

C. Real Data

While no gold standard exists for evaluating spectral HRV
estimates on real data, the LF/HF ratio during sleep has been
shown to be related to sleep state [2], [22]. In general, the
deeper sleep a normal subject experiences, the more dominant
the parasympathetic branch of the nervous system is, which is
associated with an increase in the HF component and a parallel
decrease in the LF/HF ratio [23], [22]. Since sleep stages can
last up to 40 min, during which time there is often little change
in the sympathovagal balance (except for brief arousals), and
an accepted objective scale for measuring sleep depth exists,
the RR tachogram of a sleeping normal subject provides an
excellent signal upon which to compare the stability of the
spectral estimation techniques described in this paper.

ECG and polysomnographic recordings were taken from 5
healthy males between the ages of 21 and 42 (mean age 32),
weighing between 65 kg and 88 kg with no known cardiac or
sleeping disorders. Subjects 1-5 slept for 7.2, 7.0, 3.3, 7.7, and
7.4 h, respectively. Subject 3 awoke early because of a nonhealth
related incident. The polysomnogram was scored at 30-s inter-
vals by two independent experts into 6 standard stages and only
5-min segments where a majority of the scores were in agree-
ment (over 80% of the record) were used.

The fiducial points of each beat are extracted using a stan-
dard peak detector [23]. The nonsinus beats were then removed
using a timing threshold technique described in [31]. Each RR
tachogram was segmented into sections corresponding to rapid
eye movement (REM) and slow wave sleep (SWS; stages 3 and
4). The LF/HF ratio was then estimated using the three methods
(FFTy;n, FFT,u1, and LS) for a sliding 5-min window (with a
80% overlap) applied to all contiguous segments for each sleep
stage. The mean and variance of these estimate was then calcu-
lated on a per sleep stage basis.

TABLE 1
LS AND FFT DERIVED FREQUENCY METRICS FOR DIFFERENT
MAGNITUDES OF ECTOPY (7)

Metric— | £E | LF | HF |
PSD |
LS 0.64 [ 039 | 061 | 1
FFTep, | 069|041 059 [
FFTy, | 1.08]052|048 | +
LS 0.60 | 0.37 | 0.62 | 08
FFlo, | 0641039061 08
FFTy, [099]050 050 | 08
LS 034 [ 0.26 | 0.74 | 0.7
FFT., | 040029 071 [ 07
Flyn | 098 | 049 | 051 | 07
LS 032 025076 | 06
FFT.., |034]025075| 06
FFTy, | 0.53]035 065 06
LS 047 | 0.32 1 0.68 | 0.8 §
FFTep, | 050 (033067 [ 087
FFly, [077]043 057|081

Subscripts indicate whether linear (lin),
cubic spline (cub) or no interpolation was
used. t indicates no ectopy is present. {
indicates two ectopic beats are present.

V. RESULTS

A. The Effect of Ectopy on the LF/HF-Ratio

Table I details the results of the three frequency-domain HRV
metrics calculation methods being investigated in this paper for
different strengths of ectopy () of a single beat in a 5-min sec-
tion of an unevenly sampled RR tachogram (300 beats). The
interpolation (in the case of FFT derived results) is performed
at 7 Hz, as before. Note that for the no ectopy case (f) the
LS method produces the theoretical value for the LF/HF ratio
of 0.64 (see Section III-C). For decreasing values of ~, corre-
sponding to increasingly earlier arrival times of the ectopic beat,
both the values of the LF/HF ratio and LF decrease while the HF
increases. In particular the LF/HF ratio drops from 1.08, 0.69,
and 0.64 for the FFT};,,, FFT .1, and LS methods, respectively,
to approximately 50% of these values in the case of v = 0.6 (a
relatively common occurrence in normal humans [2]).

For more than one ectopic beat in a 5-min section of data
(not occurring sequentially), the same trend is observed. The
last 3 lines in Table I are the results for HRV metric estimation
with two ectopics and v = 0.8. Again, the power in the LF
region is under-estimated and over-estimated in the HF region
resulting in a value for the LF/HF ratio of approximately 50%
of the no-ectopy case. The removal of ectopy for calculating
spectral HRV metrics is, therefore, essential.

B. Resampling Methods With Beat Replacement or Removal:
Metric Performance

Fig. 5 presents results on LF/HF ratio estimates from methods
(i)—(iv) for Monte Carlo runs over 1000 5-min artificial RR
tachograms each with an LF/HF ratio of 0.64. Linear interpola-
tive beat replacement of ectopic beats [method (ii)] results in a
similar performance to method (i), where no beat replacement
is performed, due to the small difference in the value of the
relevant RR intervals and the data inserted from linear resam-
pling. However, as the incidence of ectopic beats increases, it
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Fig. 5. LF/HF ratio estimates for methods i (), ii (0), iii (>) and iv (-) when
dealing with different numbers of ectopic beats in a 5-min RR tachogram with
an actual LF/HF ratio of 0.64. Each point is an average of 1000 randomly seeded
runs with error bars indicating &1 standard devaition. Note that each method
has been plotted with a small offset on the x-axis for reasons of clarity.

becomes noticeable that the increase in over-estimation of the
LF/HF ratio using method (i) is twice that of method (ii). This
is as expected; twice the number of RR intervals are changed
using linear resampling in method (i), since the ectopic beat
is not replaced, but removed [see Fig. 4(i) and (ii)]. A similar
trend can be observed in method (iii), but since cubic spline re-
sampling results in a more accurate representation of the under-
lying signal than linear resampling [see Fig. 4(iii)], cubic spline
resampling produces only a small over-estimate of the LF/HF
ratio with a low incidence of ectopy. Interpolation of ectopic
beats with resampling prior to FFT analysis [method (ii)] pro-
duces an estimate with accuracy between methods (i) and (iii);
no beat replacement and resampling with linear and cubic spline
interpolation, respectively.

Method (iv) produces an accurate estimate of the LF/HF ratio
to within 1% of the theoretical value of 0.64, with a standard
deviation over the 1000 Monte Carlo runs of less than 1%. At
the limit of 30 ectopic beats, method (iv) continues to result
in an accurate estimate [to within 3% of the theoretical value
and with a standard deviation of less than 2.8%, an order of
magnitude lower than for methods (i)—(iii)]. This is an important
point; not only does resampling produce, on average, an over-
estimate in the LF/HF ratio compared to the theoretical value,
it also produces an increase in the uncertainty of the estimate.
Both of these errors increase with the quantity of missing data.
However, the LS method produces little error with respect to the
theoretical value, and little increase in variance on the estimate
at even high levels of missing data (20% in the case illustrated
here).

It should be noted that these results are only for one particular
heart rate and LF/HF ratio. For lower heart rates, a lower density
of data will cause the linear interpolation-based FFT method
to further over-estimate the LF frequencies and the cubic
spline-based methods will behave increasing more erratically,
oscillating between the RR intervals. The LS periodogram will
provide only a slight increase in variance of the estimate, as
for higher missing data. For higher heart rates, ceteris paribus

TABLE 1I
LS AND FFT DERIVED MEAN LF/HF-RATIOS (+10) IN SWS

PSD — LS FFTou FFTou
Subject |

1 0.62+£0.77 | 0.83£1.30 [ 1.10£1.25
2 1.92+1.12 | 2.27 +1.87 | 3.46 +2.93
3 1.18+0.52 | 1.30+0.74 | 1.94+1.14
4 0.95+0.40 | 1.07£0.68 | 1.48 £0.96
5 239+£131 | 253 £1.76 | 3.65 £2.50

Subscripts indicate interpolative technique; linear (lin),
cubic spline (cub) or none. note that the mean LF/HF
ratio and its variance (o?) are significantly lower for
the 1s periodogram (using the F-test and student’s t-test,

respectively).
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Fig. 6. LF/HF ratio estimates (a-c) and sleep scores (d) during 7.2 h of sleep
for a normal healthy human male (subject 01). LE/HF ratio is estimated using
the three methods; (a) LS, (b) F'F'T..; and (¢c) F' F'T};,,. Note the FFT methods
produce estimates with a higher variance. The lower graph (d; the corresponding
hypnogram over this segment) is plotted in the conventional manner. 1 indicates
Awake, 0 REM sleep and —1 to —4 represent sleep states 1 to 4. SWS is defined
to be stages 3 and 4.

one would expect an improvement in the performance of the
FFT-based metrics since the density of data (in time) increases
and the interbeat estimates of the interpolative techniques
should be more accurate (for a given resampling frequency).
However, since an increase in heart rate is associated with an
increase in the incidence of ectopy [2] and artefact [31] and,
therefore, more nonsinus RR intervals that require removal.
FFT-based techniques may, therefore, perform less well at
higher heart rates whereas the LS periodogram will result in an
improved estimate from the overall larger number of data points
available. Another factor that should affect the performance of
the FFT-based metrics is the overall HRV. High variance will
lead to increases in the overestimate of the LF frequencies by
linear interpolation, and unstable oscillations by cubic spline
interpolation.

C. Results on Real Data

Table IT summarizes the results for all five subjects and Fig. 6
illustrates the fluctuations of the three spectral HRV metrics
being tested for subject 1 over the entire night’s record (7.2 h).
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From visual inspection, the LF/HF ratio calculated by the LS
method (a) appears to be less noisy (has a lower variance). This
observation is verified using the F-test [15] (P < 0.01) to com-
pare between the LS and each FFT-based method over the en-
tire course of the record. Note that between the 500th and 600th
30 s epoch there is an increase in mental activity [REM and
awake stages 0 and 1, respectively, in Fig. 6(d)] which is accom-
panied by an increase in heart rate and incidence of nonsinus
(artefactual) data. The FFT-based estimates [Fig. 6(b) and (c)]
have large (and differing) LF/HF ratio over these epochs, due to
the large number of corrupted beats that must be removed and
the resultant over-estimation of the LF component of the LF/HF
ratio. Student’s t-test [15] also demonstrates that the mean is
significantly lower for the LS method. These observations are
consistent for every subject (see Table II). See [32] for further
details of experiments on real data.

VI. DISCUSSION

It is clear that the interpolation techniques used to replace ec-
topic beats add LF components and reduce the high-frequency
content. HF is, therefore, under-estimated whilst LF and the
LF/HF ratio are over-estimated with resampling PSD estima-
tion methods. Furthermore, not all ectopic beats occur instead
of a sinus-beat. Uncertainty as to whether beat replacement or
removal is appropriate, coupled with the negligible advantage
offered by beat replacement in cases where it is appropriate,
implies that the LS method, which is not plagued by such un-
certainties, is a superior unsupervised method. The results pre-
sented in this paper are in agreement with the results on real data
of Birkett ef al. [19] and Lippman ez al. [10] (see Section IV-A)
noting that the LF over-estimation dominates the calculation of
the LF/HF ratio.

By analyzing the data from a theoretical stand-point an infor-
mation bound (At,, = 1.25) is found, above which the average
Nyquist frequency cannot be resolved and an accurate estimate
of the HRV at 0.4 Hz cannot be made. [15, Chapter 13] presents
an interesting discussion of the estimation of the periodogram
accuracy at each frequency based upon the sample statistics. A
low number of RR intervals corresponding to the frequencies
near 0.4 Hz will lead to erroneous estimates at these frequencies.
The power above 1/2RR iy Hz, where RRyy;, is the shortest
RR interval, should be assumed to be zero, since we do not have
any information above this frequency.

Resampling of the inherently unevenly sampled RR
tachogram adds erroneous data which cause significant er-
rors in PSD estimates of the RR tachogram. Furthermore,
replacement or removal of nonsinus beats (ectopic or artefacts)
prior to FFT analysis using standard methods, compound these
errors and produce significant increases in both the mean
and variance of the estimate, which increase linearly with the
incidence of nonsinus beats (such as artefacts, data dropouts
and ectopy) which must be removed. The LS periodogram, a
method which requires no resampling of unevenly sampled
signals, is shown to provide a superior estimate of HRV metrics
which is stable and accurate even for a high percentage (20%)
of RR interval removal. Beat removal is shown to be essential,
but replacement of ectopic beats is shown only marginally
to reduce the error introduced by resampling (and incorrect

replacement increases the error). It should be noted that an
optimal adaptive threshold timing for removing abnormal beats,
prior to the use of the LS periodogram, is now appropriate.
Since the number of missing beats does not significantly affect
the LS periodogram-based estimate of the LF/HF ratio, a timing
threshold, to exclude abnormal beats from the RR tachogram
can be reduced (see [23] and [31]).

The LS method, therefore, makes an excellent on-line algo-
rithm for analyzing data where high levels of artefact or ectopy
are found, or where beat classification is uncertain (since re-
moving a suspect beat does not affect the performance of the
LS periodogram significantly, up to the average Nyquist limit).
Recent work by Teich et al. [33] has shown that all current
scale independent spectral HRV metrics (such as Wavelets and
Detrended Fluctuation Analysis) evaluated on resampled data
are theoretically equivalent to FFT methods. The analysis in
this paper is, therefore, relevant to all existing frequency do-
main HRV techniques. A more detailed discussion of this can
be found in [23].

Many of these techniques employed to calculate HRV metrics
can only be evaluated on an evenly sampled time series. In order
to compare the performance of such techniques, the LS method
could be inverted to provide an optimal resampling scheme.
Scargle [34] has demonstrated that calculation of a Lomb DFT
is possible and hence its inverse could be used to aid resampling
of a time series.

An interesting treatment of statistical procedures related to
linear prediction and optimal filtering for unevenly sampled data
sets by Rybicki et al. [35] provides alternatives to the above
approach and could be compared. However, all of these can
at best, deal with weakly nonstationary processes. A more re-
cent method developed by Qi et al. [36] uses Kalman filtering
to estimate the spectral components of unevenly sampled non-
stationary data. This approach could be compared to other ap-
proaches that deal with nonstationary data after the application
of various interpolation schemes to develop an improved HRV
metric.

VII. CONCLUSION

Using a realistic artificial RR tachogram generator traditional
FFT methods for calculating the PSD of resampled tachogram
have been evaluated on a signal with completely known com-
ponents and compared to the LS periodogram, which does not
require resampling. This paper demonstrates that nonsinus in-
formation must be removed from the RR tachogram and that
the estimation of HRV through conventional spectral methods
(that require a resampling step) introduce significant systematic
errors. The LS periodogram is shown to mitigate for these errors
even in the presence of a large amount of missing data (either
from corruption, ectopy or dropout).

By analyzing real data in sleep, it is demonstrated that the LS
periodogram provides a lower variance estimate of the LF/HF
ratio for a given sleep stage, particularly SWS. Since one ex-
pects the LF/HF ratio to be relatively stable within SWS, the
lower variance of the LS estimate over time in SWS indicates
that the LS periodogram provides a more robust and accurate
method for calculating spectral HRV.
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