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Abstract: Time-varying ventricular elastance models have been used extensively in the
past to simulate the pulsatile nature of cardiovascular waveforms. Frequently, however,
one is interested in dynamics that occur over longer timescales in which case a detailed
simulation of each cardiac contraction becomes computationally burdensome. In this
paper, we apply circuit-averaging techniques to a simplified lumped-parameter model of
the cardiovascular system. The resultant cycle-averaged model is linear and time invariant,
and greatly reduces the computational burden. It is also amenable to systemic order
reduction methods that lead to further efficiencies. Despite its simplicity, the averaged
model captures the dynamics relevant to the representation of a range of cardiovascular
reflex mechanisms. Copyright © 2003 IFAC
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1. INTRODUCTION

Over the past thirty years, computational models of
cardiovascular function have become abundant in
both basic research and teaching, with increasingly
more sophisticated models becoming available at any
biological size and time scale. At the system level,

time-varying ventricular elastance models have -

proven to be useful representations of the right and
left heart [see, e.g., (Sunagawa and Sagawa, 1982)],
that, when coupled to appropriate models of the
peripheral systemic and pulmonary -circulations,
allow for simulation of realistic pulsatile pressure
and flow waveforms. Frequently, however, one is not
interested in an instantaneous value of a particular
variable or the details of a specific waveform but
rather in the system’s average response to
perturbations in its parameters. This response
typically occurs over time scales that are large
compared to the dynamics of cardiac contraction. In
these cases, a cycle-averaged model, which tracks
cycle-to-cycle (i.e. intercycle) dynamics rather than
intracycle dynamics, seems desirable for several
reasons. First, by ignoring the fine intracycle
structure of each waveform, one can expect to reduce
computational time significantly. Second, one can

anticipate that analysis of the dynamics of interest
simplifies if the model structure is reduced
sufficiently. Third, it is typically the time-averages
and not instantaneous values of key state variables
that are regulated through the feedback control
embodied in cardiovascular reflex mechanisms.

The goal of this paper, which builds on (Chang,
2002), is to study a simplified lumped-parameter
hemodynamic model and to derive a cycle-averaged
version of it by applying circuit-averaging techniques
from the power electronics literature (Verghese,
1996). The process of cycle-averaging preserves the
state-space description of the model. Furthermore,
the resulting model structure turns out to be linear
and time-invariant (LTI), which allows for further
insight into and simplification of the model structure.

2. PULSATILE MODEL

We implemented a simplified version of a lumped-
parameter representation of a previously published
closed-loop pulsatile hemodynamic model (Heldt et
al., 2002). The simplified model is still rich enough
to represent the essential time-varying dynamics of




the pulsatile model and to serve as a sufficient
testbed for our development of an averaging
methodology. As shown in Figure I, the model is in
circuit form, and consists of three segments,
representing a cardiac, an arterial, and a venous
compartrment, respectively. The pumping action of
the heart is represented by a single ventricular time-
varying compliance, C(?) [the inverse of a time-
varying elastance, £(1), i.e. C(t) = 1/E(t)], which
cycles with period T between a diastolic value Cp of
duration Tp, and a systolic value Cs of duration T, as
shown in Figure 2. We assume T5 / Tp = % for
convenience.  Voltages in this circuit analog
represent pressures, and currents represent blood
flows.
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Fig. 1. Pulsatile model. C(z) is a time-varying
compliance; ¥V, and V,, are defined here for
future reference (see Section 3.2); the voltages V,
V,, V, represent cardiac, arterial, and venous
pressures, respectively.
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Fig. 2. Time-varying compliance waveform.

The arterial and wvenous compariments are
characterised by constant resistances and
compliances. The system is thus described by a set of
three coupled linear differential equations:

#lCo-r,w]=[L0-1,0)]
#ho=¢li0-i0]
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2vm= _C{T[i‘ 0 -1,)]
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The currents can be expressed using the constitutive
relations for the resistors:
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Table 1 shows the parameter assignments and initial
conditions for the pulsatile model.
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Table 1. Parameter assignments and initial conditions

for the pulsatile model

Compartment: 0 1 2
R(Q) 0.01 1.0 0.03
C(F) 04-100 20 100.0

Vinicia1 (V) 7.0 56.0 9.0

Figure 3 shows the voltage waveforms generated
with the pulsatile model described above. It should
be pointed out that the spikes in the voltage ¥V, are
non-physiologic and not seen if a more realistic time-
varying compliance waveform is used [see, e.g.,
Heldt et al, 2002)]. Figure 4 shows the transient
response of the voltage waveforms to a step in the
resistance R; at time t=5s and demonstrates that
changes in the cycle-to-cycle dynamics occur over
timescales that are large compared to the timescale of
intracycle dynamics.
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Fig. 3. Voltage waveforms generated using the

pulsatile model. ¥/° and ¥, , are defined here for

init
future reference.
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Fig. 4. Transient response of pulsatile waveforms to a
step change in the resistance R; from 1.0Qto 5.0
Q) at time t=5s.

3. DEVELOPING A CYCLE-AVERAGED MODEL

In developing a cycle-averaged version of the
simplified cardiovascular model, we make use of the
definition of the symmetric time-average of a
periodic waveform ¥ over a period T

=1

vy =L [v(ar

-T2

@

An important property of this definition is that the
derivative of the time-averaged waveform equals the
time-average of its derivative, i.e.




d 4

(Lra)=2{rv) 3)
When averaging constraint equations for terminal
voltages, currents, and charges of linear and time-
invariant components of the circuit, such as Ohm’s
law for a linear resistor, one can easily verify that the
time-averaged voltages, currents, and charges obey
the same - comstraints as their instantaneous
counterparts. Our attention in finding a cycle-
averaged description of the pulsatile model therefore
focuses on finding a cycle-averaged description of
the elements that give rise to the nonlinear and time-
varying nature of the circuit, namely the diodes and
the-time-varyingelastance.

3.1 Replacing the time-varying elastance

The cycle-averaged voltage across the central
capacitor is given by

(rey=(E®-00) )
If the instantaneous charge Q(t) were of low ripple’,
one could approximate the average of the product on
the right hand side by the product of the averages. In
the pulsatile model described above, however, Of1)
has a relative peak-to-peak ripple of approximately
100%, which is certainly not low ripple. We
therefore expanded both E(1) and Q1) in a Fourier
series to first order:

=5 a5

= -cos[ |+ -si (3"_)
AN =0 +0 cos[rj Q, -sin .
The right-hand side of equation (4) can now be
equated to

(B0 o) ~EQ +:(EQ +E,Q)  (6)

Ep and Qp are equivalent to (E (t)) and (Q(t)) ,
respectively. Since, for now, E(?) is strictly periodic,
Ey, E,, and E; are constant. Furthermore, {; and Q,
can assumed to be constant over the cycle period 7.
The second term on the right-hand side of equation

(6) therefore represents an offset voltage, ¥, that

(%)

is approximately constant over the averaging interval.
Equation (4) therefore equates to

(r ) ~(E) (W) +V.p M
The time-averaged rate of change of the charge on
the central capacitor, i.e. the current flowing into or
out of the capacitor, can now be evaluated using
equation (7):

(i) =7< ()~ = (ﬂ?s_)ﬂ]ﬂ]

1 4
=57 (rn)
The final equality in (8) follows from the constancy
of (E) and V. Using the definitions in Figure 2,

(8

(E) is given by

! The relative peak-to-peak ripple of a waveform V is
Vpp = (Veax — Vmin)/<V>~
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(E)=rar+ ©
The time-varying elastance mtroduced in Section 2
can therefore be replaced using a constant capacitor

with capacitance C =1 (E) and constant offset

voltage V, .

3.2 Replacing the diodes D; and D>

To deal with the diodes D, and D,, we introduce a
switching function g(2) that is 1 when the diode D, is
conducting and 0 when D, is non-conducting. The
square-wave nature of the time-varying compliance
waveform allows for two simplifications: (1) g(2)=1
throughout 7 and g()=0 throughout T and (2) a
switching function for D, is given by [1-g(#)], i.e. D2
is conducting when D; is not and vice-versa. To
study the currents through the diodes, it will be
convenient to introduce the following vo]tages (also
see Flgure 1):

V. =[=g@®]-¥,@)+q@)- V()
=q(®)-V,0)+[1-q®]- ¥.()

The time averages of the currents i, and i, can now
be represented using the switching function q(t):

(L©) =2 (7))
=2 (GO (g v,oN+  ap
+2 (2@ - 7,0}~ (%))

(@)= (1) ~(7,)

A (CORANRCORAG))

The remainder of this sub-section will be devoted to
finding appropriate approximations to the terms in
equations (11) and (12) that are averages of a product
of the switching function with one of the voltage
waveforms. We seek approximations invoking
combinations of averaged waveforms to replace the
averages of combinations of waveforms.

(10)

(12)

The diastolic venous waveform: (q(t)-Vz(t)>

represents the cycle-averaged diastolic venous
waveform. Owing to the large value of C,, V; is

approximately constant around the value (V,) as can

be seen from Figure 3. It is therefore appropriate to
approximate the diastolic venous waveform by

CORAOEICIOIRIAGIE
=2-(,0)

The diastolic cardiac waveform: q(t)-V (&)

represents the cardiac waveform during diastole. The
time course of this can be expressed as follows

vo=r+r-%) [m{ ]] "




By invoking continuity of charge (blood volume), the
cardiac voltage at the beginning of diastole, Vo'"' , can
be expressed in terms of the arterial end-systolic
voltage, ¥,*, according to

Vol =gy (15)
Inserting equation (15) into equation (14) and
applying the cycle-averaging operation results in a

cycle-averaged expression for the diastolic cardiac
waveform:

(90) ¥ 0)=2(C, () -C7"):

Ty 1)
[exp[———-c:)’?z ]—IJ + 7-<V2 >
Equation (16) necessitates finding an expression for
<K> in terms of the other cycle-averaged voltages.

(16)

End-systolic arterial voltage: To find an expression
for the end-systolic arterial voltage, ¥,“, we make a
straight-line approximation of the arterial voltage

waveform V(1) with a slope of - :c' , as suggested
11

by Figure 3. Under this assumption, it can be easily

verified that V" is given by

Ve =) Sher a7

IRGT

The diastolic arterial voltage: The diastolic portion
of the arterial waveform can be approximated by

0=V -v,)-exp[ 5]+ 0

so that the cycle-averaged diastolic arterial waveform
is given by

(a0 %) =2 (V) + 22 (7 =(7,)
TD
Rl

o)

into which (17) can be substituted.
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Fig. 5. Circuit representation of the cycle-averaged
model. V,, V,, I, and I, are voltage and current
sources, respectively, that depend on the cycle
averaged voltages in the circuit.

3.3 Model structure and initial conditions

Combining the results of the last four sub-sections
with equations (1), (8), (11), and (12), it emerges that
the resultant cycle-averaged model can be
represented by the LTI circuit model in Figure 5, and
equivalently by a state-space model of the form
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) (AG), RAO)
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An eigenvalue decomposition of 4 reveals the
following eigenvalues [4, 4, 4;] = [-109.02, 08, 00] .
The negative reciprocals of the three eigenvalues of
A are the time constants of the exponentials that
govern the response of the model to initial conditions.
The eigenvalue /4, is irrelevant to our simulations as
it corresponds to a time constant much smaller than
our averaging interval 7. The second eigenvalue
corresponds to a time constant of approximately
1.49s. The final eigenvalue, A4, =0.0 , with its
corresponding eigenvector Ej; indicates that a non-
zero steady-state solution exists. In fact, after initial
transients due to A4 and A, have subsided, the
system will settle in a new steady-state S proportional
to E 3

. S=y-E, e3))
where y is determined by the total charge in the
system according to the constraint
7Ey ‘Vuym}

Qloml = [Crﬂ" G Cz] { 7E3,

rEp

(22)

We can determine y by requiring that the total
charge in the cycle-averaged model equal the total
charge in the pulsatile model. The state S then
becomes a natural choice for the initial conditions of
the cycle-averaged model. Using the waveforms
generated by the pulsatile model, the offset pressure

can be computed to ¥ =-14.51. The total charge

of the pulsatile model is 1082C, which leads to
y =70.69 . Thus the initial condition for the cycle-

averaged model is given by S’ =[27.84,64.34,9.06].

4. COMPARISON OF SIMULATIONS

To evaluate the performance of the cycle-averaged
model we will compare its simulation results and
simulation time to that of the pulsatile model.

4.1 Comparison of steady-state numerics

In Table 2, the steady-state responses of the cycle-
averaged model (CAM) and the pulsatile model (PM)
are compared. All but two of the steady-state values
show a negligible discrepancy between the cycle-
averaged and the pulsatile model. The remaining two
variables are not independent, and an improvement in
V, will certainly lead to an improvement in gg. One
could tune the offset voltage Vg, in the cycle-
averaged model to reduce the discrepancy of V)
between the cycle-averaged and the pulsatile model.




Table 2. Comparison of steady-state simulation

results
Variable PM CAM Rel. Error
Vo (V) 29.23 27.85 -4.7%
VvV, (V) 64.07 64.36 0.5 %
Vo (V) 9.01 9.06 0.6 %
ip (A) 55.06 55.30 0.4 %
i1 (A) 55.06 55.30 0.4 %
ia (A) 55.09 55.30 0.4 %
q0 (C) 53.03 47.06 -11.26 %
q1 (C) 128.14 128.72 0.5%

g, (C) - 900.83 906.22- 0.6 %

4.2 Comparison of dynamic responses

To compare the responses of the two models to
changes in their parameters, we chose to (1) perturb
the arteriolar resistance R, and (2) the cycle period T.
Both parameters play important roles in
cardiovascular homeostasis through feedback
regulation, and both have the capacity to change by a
factor of 2 over short periods of time. Figure 6 shows
the beat-by-beat averaged response of the pulsatile
model (solid line) and the response of the cycle-
averaged model (dashed line) to a change in R;. At
time t=15s, the resistance is ramped from R;=1.0 Q
to R;=2.0 Q over a period of 2 s. At time t=45 s, this
process is reversed. Figure 7 shows the transient
dynamics of both models when the cycle period is
changed in a step from 7=1.0 s to 7=0.5 s. The step
is again reversed at t=45 s. Both transient simulations
show that the time constants of the system-level
response are preserved well by the cycle-averaged
model. The main discrepancy between the
simulation outputs of the two models is the static
offset in the steady state value of V.

4.3 Computational efficiency

Both the pulsatile and the cycle-averaged model
were implemented in the C programming language
using a LINUX operating system on a PC (AMD
Athlon 1.2 GHz processor). A standard fourth-order
Runge-Kutta integrator was used to solve the
differential equations numerically.
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Fig. 6. Transient response to changes in R;. CAM:
dashed line; PM: solid line.
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Fig. 7. Transient responses to changes in 7. CAM:
dashed lines; PM: solid lines.

Due to square-wave nature of the time-varying
compliance waveform, a step size of 10 s was used
for the pulsatile model. In Table 3, we present the
steady state voltages of the pulsatile model and of the
cycle-averaged model for three different step sizes.
The source codes were compiled using the —pg
option of the gcc compiler. Each program was run for
10,000 s and LINUX’s Gprof utility was used to
assess the CPU time. The CPU times given in the
table below are averages of five separate runs for
each program.

Table 3. Computational efficiency vs. simulation

accuracy
Variable PM CAM
step size (s) 10° 107 107 107
Vo (V) 2923  27.85 27.85 27.85
Vi (V) 64.07 6436 64.36 . 6436
Va (V) 901  9.06 906 9.06

CPUtime (s) 13077.7 190.1 19.0 1.9

As can be seen from this table, the CPU time for the
cycle-averaged model can be improved by a factor of
7000 over the pulsatile model without degradation of
accuracy.

5. MODEL REDUCTION

As noted in Section 3.3, the cycle-averaged model
has one very fast time constant 7, = -1/ 4, =~ 0.009s .

As mentioned before, this time constant is much
smaller than our averaging interval and is therefore
irrelevant to the cycle-averaged model. Using ideas
from singular perturbation theory [see, e.g., (Caliskan
et al., 1999)], we can accordingly partition the cycle-
averaged state- space model as follows

X A x
f = 14! 2 ) f (23)
5] L4 4]lx

where x, and x, correspond to rapidly and slowly

varying signals, respectively. In our case, the
structure of the matrix A in (21), suggests that x,

corresponds  to (Vo) and x_to [(K),(Vz)] . Since

X, is a signal with a very fast transient, X, will be

approximately zero after a short time interval.




x, can be written in terms of
x, following the fast transient interval:

X, = _Al_lAz X

Substituting this in the expression for x_ yields 2

Consequemly,
(24)

reduced-order cycle-averaged model, still in state
space form:

. -1

X~ (A4 - A4 Az)'x:
In Table 4, we compare the steady-state capacitor
voltages and CPU times for the largest possible time
steps that the pulsatile, the cycle-averaged, and the
reduced-order models permit. The CPU times are
again based on 10,000s simulations, and represent
the averages of five separate runs of each program.

(25)

Table 4. Comparison of pulsatile, cycle-averaged,

and reduced-order model

Variable PM CAM ROM
step size (s) 10¢ 102 10T
Vo (V) 2923 2785 2785
Vi (V) 6407 6436 64.36
Vo (V) 9.01 906 9.06
CPU time (s) 13077.66 1.87  0.19

In Figure 8, we compare the dynamic response of the
three models to a ramp in the resistance R, from 1.0
Qto2.0Qatt=15s.

Note that the reduced-order CAM runs 10 times
faster than the CAM. The only noticeable difference
in the dynamic responses is seen in the arterial
voltage V) after the new steady state is attained. The
relative error in ¥; between the ROM and the PM
responses is only 2.3%, however, and therefore well
within the tolerable range for the approximations
made.

6. CONCLUSIONS

In this paper, we have applied circuit-averaging
techniques to a simplified lumped-parameter model
of the cardiovascular system. We have shown that
the resultant model structure is linear and time
invariant, which allows for further insight into the
model structure as demonstrated by our analysis of
eigenvalues and eigenvectors. The realization of a
fast time-constant also led to the development of a
reduced-order model using singular perturbation
techniques. The cycle-averaged models allow for
more generous time steps, which reduces the CPU
time by a factor of 7000 for the full CAM and 70,000
for the reduced CAM, while still preserving accuracy
of the simulation output. It has to be pointed out,
however, that the small time step required by the PM
is due to the square-wave model we have assumed
for time-varying compliance; more realistic
compliance varjations will allow somewhat bigger
time steps.
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Fig. 8. Ramp in resistance R; at time t=15 s. PM:
solid line; CAM: dashed line; ROM: dash-dotted
line.

It is our main conclusion that cycle-averaging is a
powerful technique to single out cardiovascular
dynamics that occur on the timescale of a few cycles.
Improvements in computational efficiency and
insight into the model structure are gained by
focusing on those components of the model that give
rise to the dynamics of interest. Future work will
include an improvement in the representation of Vp,
more realistic compliance variation, extension to
multi-chamber heart models, and addition of
cardiovascular reflex mechanisms to allow for
homeostatic control.
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