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Abstract

Lumped-parameter models of the cardiovascular system

have been used extensively in the past, especially when

coupled to time-varying elastance (or compliance) repre-

sentations of ventricular contraction. In this paper, we

use a physiologically motivated approximation to the time-

varying compliance waveform to derive analytical solu-

tions to the short-term (intra-beat) and long-term (inter-

beat) evolution of a minimal cardiovascular model. We

show that this approximation turns a non-linear, periodi-

cally varying model into one that is periodically-varying

and linear for physiologically reasonable initial condi-

tions. The solution to the equations of motion takes the

form of an affine transformation of the initial conditions.

The methodology outlined in this paper is applicable to

larger versions of the type of models considered here.

1. Introduction

Recently, several authors have shown interest in explor-

ing and analyzing minimal lumped-parameter cardiovascu-

lar models with the potential to serve as aids in the clinical

decision making process [1, 2]. The topological simplic-

ity of such models begs the question whether analytical

methods can be used to arrive at solutions of their govern-

ing equations. Such analytical solutions are highly desir-

able as they convey tremendous insight into the structure

of the model and its dynamic behavior. For example, one

can study the solution’s dependence on model parameters

and can explicitly compute sensitivities required for model

fitting to experimental data. Furthermore, analytical solu-

tions usually allow for simulations at speeds significantly

greater than what is required for numerical simulations.

The goal of this paper is to derive an analytical solu-

tion of the intra-beat and the inter-beat evolution of a min-

imal model of the cardiovascular system. By invoking

a physiologically-motivated approximation of the time-

varying ventricular compliance, we turn a non-linear time-

varying model into one that is linear and periodically vary-

ing. The resultant analytical solutions can be used as the

basis for cycle-averaging (as pursued in [3]) or find utility

in clinical decision support (as suggested in [2, 1]). The

methodology presented below can be applied directly to

larger models of the cardiovascular system and is there-

fore not limited to the specific topology considered here.

2. Model description

We adopted the minimal model presented in [3] as the

basis for our work. It consists of a central venous compart-

ment, a single cardiac compartment, and a single arterial

compartment that are connected in series and in closed-

loop (see Figure 1). The parameter assignments for the

model are largely taken from Davis and Mark [4].

The arterial and the venous compartments are described

by passive, linear, time-invariant circuit elements. The car-

diac compartment is both non-linear (due to the diodes)

and time-varying (due to the time-varying capacitor). The

pumping action of the heart is represented by a time-

varying elastance (the reciprocal of compliance).

Figure 2 shows the normalized time-varying elastance

waveform for the human left ventricle as adapted from

Senzaki and co-workers [5] (left panel). To arrive at the

time-varying compliance waveform, C(t), shown as the

solid line in the right panel of Figure 2, we scaled the in-

verse of the time-varying elastance to vary between real-

istic systolic (low capacitance) and diastolic (high capaci-

tance) values.

The resultant state evolution equations can be imple-

mented on a computer and solved numerically once an

v a

ii

R R
CC

R

i

C(t)
v

v

v

p

p

a

a

a

h
P P

P

Figure 1. Circuit diagram of the pulsatile hemodynamic

model. Ph, Pa, and Pv are the pressures in the cardiac, the

arterial, and the venous compartment, respectively. C(t) is

the time-varying cardiac compliance.
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Figure 2. Time-varying ventricular elastance (left); time-

varying ventricular compliance (right; solid line) and

piecewise constant compliance (right; dashed line).

appropriate set of initial conditions have been supplied.

We will refer to the model described thus far as the time-

varying capacitance model.

To solve for the evolution of the model analytically,

we will make a simplifying assumption, namely that the

time-varying capacitance of the ventricular compartment

is piecewise constant (as suggested by the dashed line in

the right panel of Figure 2):

C(t) =

{

Cs, for 0 ≤ t ≤ Ts + T r
d

Cd, for Ts + T r
d < t ≤ T

We thus move from a ventricular model based on a pe-

riodically time-varying capacitance to one that is switch-

ing periodically between two capacitance values. We will

refer to the model incorporating the piecewise constant

capacitance approximation as the switched capacitance

model. At any given moment, the switched capacitance

model is in one of two possible configurations: a sys-

tolic (ventricular ejection) configuration shown in Figure 3

or a diastolic (ventricular filling) configuration shown in

Figure 4. This simplification turns the non-linear, time-

varying model into one that is T -periodically varying and

effectively linear.

Since the switched capacitance model is effectively lin-

ear and T -periodic, one could directly apply results from

Floquet theory (see, for example, [6]) to arrive at the evo-

lution equations of the system. In the derivations below,

however, we opted for a more straight-forward solution of

the differential equations as this process suggests certain

natural approximations.

3. Intra-beat evolution

3.1. Systolic phase

Physiologically reasonable initial conditions for the sys-

tolic configuration of the model are given by Ph > Pa >
Pv . Solving for the node equations and the flow equations,

we arrive at the following set of differential equations:

CvRpṖv = Pa − Pv

CaṖa = −Pa

(

Ca+Cs

RaCs
+ 1

Rp

)

− Pv

(

Cv

RaCs
−

1

Rp

)

+
Q

RaCs

where, in order to eliminate the ventricular pressure Ph,

we made use of the fact that total charge, Q, in the circuit

is conserved

Q = C(t)Ph + CaPa + CvPv = const.

When introducing the time constants

τpv ≡ RpCv and τas ≡ Ra

CaCs

Ca + Cs

the dimensionless smallness parameters

δs ≡
RaCs

Rp(Cs + Ca)
and γs ≡

Cs + Ca

Cv

and the systolic equilibrium potential

P̄s ≡
Q

Cv + Cs + Ca

we obtain a homogenous set of state equations by intro-

ducing state variables that measure the deviation from the

systolic equilibrium potential, namely

pas ≡ Pa − P̄s and pvs ≡ Pv − P̄s.

The set of state evolution equations thus reduces to

τpv
d
dt

pvs = −pvs + pas

τas
d
dt

pas = −pvs
1

γs
(1 − δsγs) − pas(1 + δs)

(1)
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Figure 3. Circuit configuration during ventricular systole.
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Figure 4. Circuit configuration during ventricular diastole.
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(If one were interested in an approximate analytical solu-

tion to the switched capacitance model, one would drop

the terms containing δs in the parentheses of Equation 1 as

they are small compared to unity.)

This homogeneous set of first order differential equa-

tions can be solved using standard methods. The general

solution is given by

Pv(t) = P̄s + Aeλs1t + Beλs2t

Pa(t) = P̄s + A(1 + τpvλs1)e
λs1t + B(1 + τpvλs2)e

λs2t

where the time constants λs1 and λs2 are functions of the

time constants τpv and τas, and the smallness parameters

γs and δs. The constants A and B are determined by the

initial conditions.

In vectorized notation, in which bold face identifies

vector-valued variables, the solution takes the form

Ps(t) = P̄s + Ms(t)

[

A
B

]

,

where

Ps(t) ≡

[

Pv(t)
Pa(t)

]

, P̄s ≡

[

P̄s

P̄s

]

,

and

Ms(t) ≡

[

eλs1t eλs2t

(1 + τpvλs1)e
λs1t (1 + τpvλs2)e

λs2t

]

3.2. Diastolic phase

We proceed in complete analogy to the previous section

in order to solve the state evolution equations during the

diastolic phase of the cardiac cycle. Introducing the time

constants

τpa ≡ RpCa and τvd ≡ Rv

CvCd

Cv + Cd

and the dimensionless smallness parameters

δd ≡
RpCa − RvCd

Rp(Cv + Cd)
and γd ≡

RvCd

Rp(Cv + Cd)

along with the diastolic equilibrium potential

P̄d =
Q

Cd + Ca + Cv

,

we can write the state evolution equations in the following

form:

τvd
d
dt

pvd = −(1 + γd)pvd − δdpad

τpa
d
dt

pad = pvd − pad

where we have introduced the state variables pvd and pad

that measure deviations from the steady-state potential P̄d.

The general solution of this set of homogeneous, first

order differential equations can be expressed in vectorized

form as:

Pd(t) = P̄d + Md(t)

[

C
D

]

,

where

Pd(t) ≡

[

Pv(t)
Pa(t)

]

, P̄d ≡

[

P̄d

P̄d

]

,

and

Md(t) ≡

[

(1 + τpaλd1)e
λd1t (1 + τpaλd2)e

λd2t

eλd1t eλd2t

]

.

The time constants λd1 and λd2 are functions of the time

constants τvd and τpa and the diastolic smallness parame-

ters δd and γd.

4. Inter-beat evolution

Without loss of generality, we assume that the cardiac

cycle starts in systole. Introducing

Es ≡ Ms(Ts + T r
d )M−1

s (0) and P̃s ≡ (1 − Es)P̄s

we can express the pressures at the end of the systolic

phase of the cardiac cycle according to

Ps(Ts + T r
d ) = P̃s + EsPs(0).

Similarly, if we introduce

Ed ≡ Md(Td)M
−1

d (0) and P̃d ≡ (1 − Ed)P̄d

we can express the pressures at the end of the diastolic

phase of the cardiac cycle according to

Pd(Td) = P̃d + EdPd(0).

Since the initial state of the diastolic period equals the

final state of the preceding systolic period

Pd(0) = Ps(Ts + T r
d )

one can express the solution at the end of the entire cardiac

cycle as an affine transformation of the initial state at the

beginning of systole

Pd(Td) = P̃d + Ed · Ps(Ts + T r
d )

= P̃d + Ed · [P̃s + EsPs(0)]
(2)

Setting

P̃ ≡ P̃d + EdP̃s and ET ≡ EdEs

Equation 2 simplifies to

Pd(Td) = P̃ + ET · Ps(0). (3)
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Equation 3 can be regarded as an evolution equation for

a time step of one cardiac period, T . Using the fact that

the pressures at the beginning of a systolic phase are equal

to the pressures at the end of the preceding diastolic phase,

one can relate the state of the system at the end of (n + 1)
cycles to the state of the system at the end of the nth cycle

according to

Pd[n + 1] = P̃ + ET Pd[n]

where the square brackets indicate time evolution in units

of entire cardiac cycles. Repeatedly substituting this ex-

pression into itself, we obtain

Pd[n + 1] = P̃ + ET Pd[n]

= (1 + ET )P̃ + E2
T Pd[n − 1]

...

= (1 + ET + · · · + En
T )P̃ + En+1

T Pd[0].

Summing up the geometric progression, we obtain

Pd[n + 1] =
1 − En+1

T

1 − ET

P̃ + En+1

T Pd[0]

=
1

1 − ET

P̃ + En+1

T

(

Pd[0] −
1

1 − ET

P̃

)

where, in both expressions, the term 1/(1 − ET ) is to be

interpreted as the matrix inverse (I − ET )−1. The first

term in the previous equation represents the steady peri-

odic mode. (One can readily see that the second term van-

ishes identically, if the initial state is taken to be the steady

periodic mode.) The second term describes transitional dy-

namics that will eventually die out as the eigenvalues of the

matrix ET can be shown to be less than unity.

5. Results

When comparing the beat-to-beat dynamic behavior of

the time-varying capacitance model to the inter-cycle evo-

lution of the analytical solution to the switched capaci-

tance model, we observed a maximum relative error of

about 8%. This error was encountered for systolic arte-

rial blood pressure. All other clinically relevant cardio-

vascular variables (such as stroke volume, ventricular end-

diastolic volume, venous pressure, mean and diastolic arte-

rial blood pressures) were all within 4% of their reference

values derived from the time-varying capacitance model.

Furthermore, these relative errors did not change signifi-

cantly when physiologically important parameters of the

model were perturbed over wide ranges. Thus, the relative

errors encountered when using the analytical solution can

be considered as constant bias.

6. Conclusion

Using a physiologically-based approximation of the

time-varying ventricular compliance, we were able to lin-

earize a previously non-linear, time-varying minimal car-

diovascular model and found analytical solutions to its

intra-beat and the inter-beat evolution. The inter-beat solu-

tion captures the dynamics of the non-linear, time-varying

model quite well. The methodology presented is directly

applicable to larger versions of the cardiovascular model.

We believe that studying the analytical solutions will help

our understanding of the behavior of the cardiovascular

system and might aid in using these kinds of models in

clinical decision support.
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