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ABSTRACT

Accurate performance metrics for removing noise from the electrocardiogram (ECG) are difficult to define due
to the inherently complicated nature of the noise and the absence of knowledge about the underlying dynamical
processes. By using a previously published model for generating realistic artificial ECG signals and adding
both stochastic and deterministic noise, a method for assessing the performance of noise reduction techniques is
presented. Independent component analysis (ICA) and nonlinear noise reduction (NNR) are employed to remove
noise from an ECG with known characteristics. Performance as a function of the signal to noise ratio is measured
by both a noise reduction factor and the correlation between the cleaned signal and the original noise-free signal.

Keywords: Electrocardiogram, nonlinear noise reduction, independent component analysis, noise, measurement
€rror.

1. INTRODUCTION

The field of biomedical signal processing has given rise to a number of techniques for assisting physicians with
their everyday tasks of diagnosing and monitoring medical disorders. The electrocardiogram (ECG) provides a
quantitative description of the heart’s electrical activity. It is a time-varying signal that reflects the ionic current
flow, which causes the cardiac muscles to contract and relax during each heart beat. The surface ECG is obtained
by measuring the potential difference between two electrodes placed on the skin. The ECG is routinely used in
hospitals throughout the world as a tool for identifying cardiac disorders.

A large variety of signal processing techniques have been employed for transforming the raw ECG signal
into a tool for diagnosing and monitoring medical disorders. A typical ECG is invariably corrupted by (i)
electrical interference from surrounding equipment (e.g. effect of the electrical mains supply), (ii) measurement
noise, (iii) analogue to digital conversion and (iv) movement artefacts. Many techniques exist for filtering®
and removing noise from the raw ECG signal, such as Principal Component Analysis (PCA),2 Independent
Component Analysis (ICA)® and nonlinear noise reduction. The ECG signal is fundamental for numerous
medical studies, including the investigation of heart rate variability, respiration and QT dispersion. The utility
of these medical indicators relies on signal processing techniques for detecting R-peaks,>® deriving heart rate
and respiratory rate,” and measuring QT-intervals.®

In order to employ the ECG signal for facilitating medical diagnosis, biomedical processing techniques are
generally used to clean the signal, thereby attempting to remove some or all of the above sources of noise.
Available spectral techniques include notch filters for removing the effect of the electrical mains supply, and both
low and high band pass filters for removing noise that dominates the high and low frequencies respectively. In
many cases, the availability of more than one lead for recording the ECG offers the opportunity to construct
a clean signal by taking averages over the different leads. A technique known as principal component analysis
(PCA) is one approach, which uses projections onto an orthogonal basis set to separate the underlying signal
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from the noise. It assumes that the directions capturing most of the variance also contain large amounts of the
signal; this is not necessarily true since important parts of the signal may have a variance similar to that of
the noise. Nonlinear noise reduction? has also been employed to filter ECG signals; this technique is capable of
separating the underlying signal from noise even in cases where both the noise and parts of the signal occupy
similar regions of the frequency domain. Independent component analysis (ICA) aims to separate a collection
of signals into a group of independent sources; the idea being that one will capture the underlying signal and
that the others will contain various sources of noise. It is also possible to apply ICA to a single univariate ECG
signal by first employing a delay-coordinate transformation® to reconstruct a state space for representing the
underlying dynamics.

It is difficult to evaluate the accuracy of noise reduction and filtering techniques applied to the ECG since
it is impossible to have access to a truly clean ECG signal. The fact that the true underlying dynamics of a
real ECG can never be known implies that one cannot distinguish between the clean ECG signal and the many
sources of noise that can occur during recording in a clinical environment. While the availability of biomedical
databases!'? provides a useful benchmark for comparing techniques and approaches, they still fail to provide a
means of testing a technique’s ability to remove noise from the ECG signal. The recent availability of a dynamical
model for generating ECG signals with known temporal and spectral characteristics and pre-specified average
morphology!! allows researchers to compare and evaluate a variety of signal processing techniques under different
conditions as specified by their particular needs. The freely available open-source software (Matlab and C code)
and a Java applet'? for downloading data directly from the Internet can be used to specify a gold standard,
whereby an ECG with well-understood dynamics can be employed for testing new signal processing techniques.

2. METHODS
2.1. Artificial ECG signal

A dynamical model for generating artificial ECG signals with pre-specified temporal and spectral properties
forms the basis of this investigation.!’  This model may be implemented using freely available open-source
software!? and may also be operated directly over the Internet using a Java applet. The underlying dynamical
system uses a three-dimensional state space to reproduce the relevant movements reflected in the ECG. A limit
cycle in the (z,y)-plane provides the quasi-periodic motion during each cycle of the heart. A series of Gaussian
functions forces the z-component to trace out an average ECG morphology consisting of the P,Q,R,S and T
peaks. Both the height and width of each of these peaks may be specified. The beat-to-beat heart rate and
associated RR intervals are controlled by specifying an internal time series with chosen spectral characteristics;
position and width of both the low frequency (LF) and high frequency (HF) peaks in the power spectrum and
the LF/HF ratio may be selected. This internal time series is used to drive the angular frequency of motion
around the limit cycle, thereby transferring the specified spectral characteristics to the RR intervals of the ECG.
This model has also been extended to produce realistic coupled nonlinear artificial ECG, blood pressure and
respiratory signals.'3

The ECG signal used throughout this investigation had a mean heart rate of 60 beats per minute, a heart
rate standard deviation of 1 beat per minute and a sampling frequency of 256 Hz. The positions of the LF and
HF components of the spectrum were 0.1 Hz and 0.25 Hz respectively and both had a standard deviation of 0.01
Hz. The LF/HF ratio was 0.5.

2.2. Noise

Noise is an all-encompassing term used to describe uncertainty in the data or specifically the part of the data
that does not directly reflect the underlying system of interest. Sources of noise commonly encountered in the
ECG include (i) electrical interference from surrounding equipment (e.g. effect of the electrical mains supply),
(ii) measurement noise, (iii) analogue to digital conversion and (iv) movement artefacts.

There is an important distinction to be made between observational uncertainty and dynamical uncertainty.
Observational uncertainty refers to measurement errors which are independent of the dynamics. Sources include
finite precision measurements, truncation errors, and missing data (both temporal and spatial). In contrast,
dynamical uncertainty refers to external fluctuations interacting with and changing internal variables in the



underlying system. While observational uncertainty obscures the state vectors, dynamical uncertainty changes
the actual dynamics.

This paper considers the effects of noise due to observational uncertainty. The simplest description of obser-
vational uncertainty is additive measurement error where the recorded signal y(t) is given by

y(t) = 2(t) +€(2), 1)

where z(t) is the true state vector and e(t) represents the unobserved measurement error. This measurement
error term is usually described by a random variable, for example an identically and normally distributed (IND)

2 2 . . . . . . 2
process, € ~ N (0, 07,4;5.), Where o7,0;, is the variance of the noise. If the variance of the signal is 0, then the
signal to noise ratio is defined as
_ Osignal ) (2)

Onoise

2.3. Evaluation

After applying a technique for cleaning the noisy data, a measure of the success of this procedure is required.
Let the cleaned signal be z(t). Following Schreiber and Kaplan,* a noise reduction factor,

X =\ GO e ®)

where (-) denotes the average over time ¢, is employed to provide a measure of the factor by which the RMS error
is reduced. Unlike the investigation of Schreiber and Kaplan,* the ECG model may be used to obtain a truly
noise-free signal z(t) so that the value of x may be viewed as the actual noise reduction factor and not merely
a lower bound. The higher the value of y, the better the noise reduction procedure, whereas xy = 1 indicates no
improvement since similar accuracy could have been achieved by using the noisy signal, y(¢), instead of z(t).

An alternative measure of noise reduction performance is given by a measure of the linear correlation between
the cleaned signal, z(t), and the original noise-free signal, (). The correlation coefficient p between two signals
z(t) and z(t) is given by'*

([z(t) — pyll2(t) — p=])
p= £ ) (4)

0202

where p, and o, are the mean and standard deviation of z and u, and o, are the mean and standard deviation
of z. Values of p ~ 1 reflect strong linear correlations, p ~ —1 implies strong linear anti-correlations, and p ~ 0
indicates that no linear correlations exist. Therefore a value of p = 1 would suggest that the noise reduction
technique has removed all the noise from the observed signal.

2.4. State space reconstruction

Reconstructing a state space using an observed time series is usually the first step towards building a model for
describing nonlinear dynamics. Suppose that the underlying system dynamics of the ECG evolve on an attractor
A according to G : A — A. Let 75 be the sampling time of the recorded signal. Given an observed time series,
y; = y(i7s), recorded by a measurement function, h : A — IR of the system state space variables, it is possible
to construct a replica state space using a delay vector reconstruction® 1% 16 of the observed time series y; defined
by

Vi = [yz'ayi+d . ;yi—i-(m—l)d] e R™ (5)

where m is the reconstruction dimension and 74 = d7s is the time delay. In order to reconstruct the dynamics
of the system state space, G, using a data-driven model, F : ®(A) — ®(A), it is necessary to ensure that the
mapping ® : A — ®(A) provides a faithful representation of the system’s attractor; in mathematical terms, ®
must provide an embedding.!” Values for 74 and m may be determined by optimising the accuracy of the noise
reduction techniques.



2.5. Nonlinear noise reduction

The ECG signal cannot be classified as either periodic or deterministically chaotic. While the ECG signal is
not predictable in the long term, it displays limited predictability over times less than one heart beat. Schreiber
and Kaplan? successfully applied a technique, originally constructed for removing noise from chaotic signals,'®
to ECG signals. This short-term predictability may be used to reduce measurement errors by a local geometric
method. The basic idea behind this so-called nonlinear noise reduction is to use the manifold of the underlying
dynamical system to project out the noise. This may be achieved by using a local linear model to predict a
particular point in the state space while using its neighbours (both backwards and forwards in time) to construct
a local linear map. This process may be iterated a number of times to clean the entire time series. For the
ECG, best results are obtained using only one iteration.* This type of filtering is nonlinear in the sense that
the effective filter given by the local linear map varies throughout state space depending on the local dynamics.
In particular it has the ability to remove noise from the recorded data, even in cases when the underlying signal
and the noise overlap in the frequency domain.

The availability of a noise-free artificial ECG implies that the correct answer is known and that a thorough
search of the parameter space is possible. The nonlinear noise reduction technique, known as nrlazy (see!®2°),
requires the choice of various parameters such as the reconstruction dimension, m, the time delay, d and the
neighbourhood radius, r.

2.6. Independent component analysis

Independent Component Analysis (ICA) is a statistical technique for decomposing a dataset into independent
sub-parts.>2!  Using the delay reconstruction described in section 2.4, the observed univariate ECG signal,
y; = y(i7s), is transformed into an m x n embedding matrix,

Y1 Yitd - Y1+ (n—1)d
Yi+d Yi+2d4 - Yi+nd
Y = . : : 9 (6)
Y1i+(m-1)d Y14+md " Yi+(m+n-2)d

where each column of Y contains one reconstructed state vector as defined by equation (5). Note that the
observed ECG signal, y;, is assumed to be mean zero with unit standard deviation, achieved by removing the
mean, i, of y and dividing by its standard deviation, o,. After application of the ICA algorithm, the resulting
cleaned signal is rescaled by multiplying by o, and adding u, so that it is compatible with y;.

In mathematical terms, the problem may be expressed as
Y = BX, (7

where X is an m X n matrix containing the independent source signals, B is the m x m mixing matrix, and Y
is an m X m matrix containing the observed (mixed) signals. ICA algorithms attempt to find a separating or
de-mixing matrix W such that

X =WY. (8)

In practice, iterative methods are used to maximise or minimise a given cost function such as mutual information,
entropy or the kurtosis (fourth order cumulant), which is given by

kurt(Y) = B{Y*} — 3(E{Y?})? 9)

where E{Y} is the expectation of Y. The following analysis uses Cardoso’s Multidimensional ICA algorithm
jadeR,® which is based upon the joint diagonalisation of cumulant matrices, because it combines the benefits of
both PCA and ICA to provide a stable deterministic solution. (ICA suffers from a scaling and column ordering
problem due to the indeterminacy of solution to scalar multipliers to and column permutations of the mixing
matrix).

Most ICA methods assume there are at least as many independent measurement sensors as sources one wishes
to separate. Following the method of James et al.2! to perform ICA blind source separation of the embedding
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Figure 1. Effect of additive IND measurement errors: (a) artificial ECG signal with additive stochastic measurement
noise y(t), (b) noise-free artificial ECG signal z(t) and (c) measurement errors €(¢). The signal to noise ratio is vy = 10.

matrix Y, the assumption of one signal and one noise source is employed with Cardoso’s jadeR algorithm. An
estimate X of the sources X are obtained from

X=WY (10)

where X is the ICA estimate of X. and [-- Imazc denotes the (normalised) vector that maximally correlates
with the normalised version of X. Note that due to the scaling and inversion indeterminacy problem of ICA,
both £ each row of X must be considered. The scaling problem is addressed by multiplying by o, and adding
ty. The row with the highest correlation with the original noise-free signal is chosen as the best estimate, 2(t),
of noise-free signal z(t).

3. RESULTS

The application of both the nonlinear noise reduction (NNR) and independent component analysis (ICA) tech-
niques is now considered for two separate cases: (i) stochastic noise and (ii) deterministic noise.

3.1. Stochastic noise

In this section, the noise is assumed to be additive measurement errors represented by a normal distribution with
zero mean. Signal to noise ratios of v = 10, 5, 2.5 were considered and in each case NNR gave optimal results for
a delay of d = 1. The effect of IND additive measurement errors with v = 10 are shown in Fig. 1.

For a signal to noise ratio of v = 10, the NNR technique gives an optimal noise reduction factor of xy = 2.09
for m = 16 and r = 0.08 (Fig. 2). A closer examination of the dependence of x on m is obtained by taking a
cross-section of the surface shown in Fig. 2 at » = 0.08. As shown in Fig. 3a there is a maximum noise reduction
factor of x = 2.2171 at m = 20. The various time series and the error involved in the noise reduction process
are illustrated in Fig. 4. This shows that while the cleaned signal, z(t) (Fig.4c) closely resembles the original
noise-free signal, z(t), (Fig. 4b) there still remains considerable structure in the error, z(t) — z(t) (Fig. 4d).
This structure is particularly evident and appears larger around the QRS complex. As pointed out by Schreiber
and Kaplan,* the NNR technique attempts to minimise the resulting RMS error and does not directly aim to
recover other key characteristics of the ECG that may be of more clinical relevance to the physician. Despite



Iog2 m

Figure 2. Variation of noise reduction factor, xy with reconstruction dimension, m, and neighbourhood size, r, for NNR
with data having a signal to noise ratio of v = 10.

Table 1. Noise reduction performance in terms of noise reduction factor, x and correlation, p for both nonlinear noise
reduction (NNR) and independent component analysis (ICA) for three signal to noise ratios, v = 10, 5, 2.5.

Method Measure =10 ~y=5 vy=2.5
NNR X 2.2171  2.6605  3.3996
ICA X 26.7265 18.9325 10.8842
NNR p 0.9990 0.9972  0.9939
ICA p 0.9980 0.9942  0.9845

this, the NNR technique does recover the peaks and troughs that define the morphology of the ECG. Both the
P-waves and T-waves are clearly visible in Fig. 4c and there positions and magnitudes remain faithful to that
of the original noise free ECG in Fig. 4b.

The NNR technique gives optimal results for neighbourhood sizes of different sizes depending on the signal
to noise ratio: (i) r = 0.08 for v = 10, (ii) » = 0.175 for v = 5 and (iii) » = 0.4 for v = 2.5. Figure 3 shows
both the noise reduction factor, x, and the correlation, p, as a function of the reconstruction dimension, m for
signals having v = 10,5,2.5. For v = 10, maxima occur at xy = 2.2171 and p = 0.9990 are at m = 20. For
v = 5, maxima occur at x = 2.6605 and p = 0.9972 are at m = 20. For v = 2.5, the noise reduction factor has a
maximum, x = 3.3996 at m = 100 whereas the correlation, p = 0.9939 has a maximum at m = 68.

ICA gave best results for all signal to noise ratios for a delay of d = 1. As may be seen from Fig, 5, optimising
over the noise reduction factor, x, or the correlation, p, gave maxima at different values of m. For v = 10, the
maxima are Y = 26.7265 at m = 7 and p = 0.9980 at m = 9. For v = 5, the maxima are y = 18.9325 at m =7
and p = 0.9942 at m = 9. For v = 2.5, the maxima are xy = 10.8842 at m = 8 and p = 0.9845 at m = 11. A
demonstration of the effect of optimising the ICA algorithm over either x or p is illustrated in Fig. 6. While
both the y-optimised cleaned signal (Fig. 6b) and the p-optimised cleaned signal (Fig. 6d) are similar to the
original noise-free signal (Fig. 6a), an inspection of their respective errors, (Fig. 6¢) and (Fig. 6e), emphasises
their differences. The y-optimised outperforms the p-optimised in recovering the R-peaks.

The results of both the NNR and ICA techniques are given in Table 1, showing that NNR performs better
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Figure 4. Demonstration of the nonlinear noise reduction: (a) original noisy ECG signal, y(t), (b) underlying noise-free
ECG, z(t) and noise-reduced ECG signal, z(t) and (c) remaining error, z(t) — z(t). The signal to noise ration was y = 10

and the NNR used parameters m = 20, d = 1 and r» = 0.08.



Figure 5. Variation in (a) noise reduction factor, x, and (b) correlation, p, for ICA with reconstruction dimension, m
and delay d = 1. The signal to noise ratios are v = 10 (o), y =5 (H) and v = 2.5 (A).

in terms of providing a cleaned signal which is maximally correlated with the original noise-free signal, whereas
ICA performs better in terms of yielding a cleaned signal which is closer to the original noise-free signal in a
RMS sense. Whether an optimal x or p is to be preferred depends on what the ECG is to be used for. If the
morphology of the ECG is of importance and the various waves (P, QRS, T) are to be detected, then perhaps
a large value of p is of greater value. In contrast, if the ECG is to be used to derive RR intervals, then the
location in time of the R-peaks are required. In this case, the noise reduction factor may be preferable since it
penalises heavily for large squared deviations and therefore will favour more accurate recovery of extrema such
as the R-peak.

3.2. Deterministic noise

This section considers the removal of real artefact which may be represented by deterministic noise. For example,
a transient repetitive finger motion, tapping on the sensor. This source of noise is simulated by a 4Hz sinusoid
modulated by a hamming window. The maximum amplitude of this noise signal was fixed at 0.1 Volts. The
effect of this deterministic noise on a clean ECG is shown in Fig. 7.

Again, both NNR and ICA performed best for a delay of d = 1. The NNR technique gave its best performance
for a neighbourhood of 7 = 0.08. The ability of both NNR and ICA to remove this deterministic noise is quantified
by the noise reduction factor, x and the correlation, p as a function of the reconstruction dimension, m in Fig.
8. NNR provides a maximum of y = 1.2264 at m = 22 (Fig. 8a), whereas ICA is superior with y = 16.4846 at
m = 7 (Fig. 8b). In contrast, NNR provides the best correlation results with p = 0.9887 at m = 22 (Fig. 8c)
whereas ICA has p = 0.9825 at m = 8 (Fig. 8d). This analysis shows again that NNR outperforms ICA in terms
of the achieving a maximum correlation, p, whereas ICA provides a better noise reduction factor, x, than NNR.

4. CONCLUSION

An artificial electrocardiogram signal with controlled temporal and spectral characteristics has been employed to
illustrate and compare the noise reduction performance of two techniques, nonlinear noise reduction (NNR) and
independent components analysis (ICA). Both stochastic and deterministic sources of noise were simulated while
investigating the accuracy of the two techniques for removing noise from the ECG signals. The stochastic noise
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Figure 6. Demonstration of ICA noise reduction: (a) original noise-free ECG signal, z(t), (b) x-optimised noise-reduced
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simulates measurement errors and the latter represents artefacts in the ECG. The quality of the noise removal
was evaluated by computing a noise reduction factor and the correlation between the cleaned signal and the
original noise-free signal. In the case of both stochastic and deterministic noise, NNR was found to give better
results as measured by correlation. In contrast, for both noise sources, ICA provided a cleaned signal with a
larger noise reduction factor. These results suggest that NNR is superior at recovering the morphology of the
ECG and is less likely to distort the shape of the P, QRS and T waves, whereas ICA is better at recovering
specific points on the ECG such as the R-peak, which is necessary for obtaining RR intervals.
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