An Interactive Web-Based Tool for Multi-Scale Physiological Data Visualization

M Oefinger', W Zong?, M Krieger?, RG Mark*

"MIT Department of Electrical Engineering & Computer Science, Cambridge MA, USA
2Beth Israel Deaconess Medical Center, Harvard Medical School Boston MA, USA
SMIT Department of Biology, Cambridge MA, USA
“Harvard-MIT Division of Health Sciences & Technology, Cambridge MA, USA

Abstract

Studies of cardiovascular pathophysiology require an
understanding of long-term trends of disease development
in monitored subjects, and ECG is the primary signal of
interest in such studies. An effective analysis most often
relies upon an iterative viewing of an interesting feature
in a long-term derived trend (heart rate, for example)
and subsequent location of the underlying ECG waveform
for a finer-resolution visualization. Traditionally such
an iterative process is time-consuming, labor-intensive,
and inaccurate. We developed a novel ’point-and-click’
technology that allows extremely efficient isolation of raw
physiological waveforms of interest based on long-term
trend plots. The paradigm is as follows: a three-
paned window shows, in the uppermost pane, a long-term
ECG averaged feature trend (e.g. heart rate), which is
automatically created by pre-processing software. Each
data point in the top pane consists of approximately ten
minutes of averaged data. By clicking on any given point
in this uppermost plot, the middle pane fills with a time-
series plot of instantaneous data from which the above data
point was derived. Clicking on any point in the middle
pane (e.g. instantaneous heart rate) causes the bottom plot
to show the signal waveform (e.g. ECG) corresponding
to that moment in time. The technology we developed
utilizes multiple open-source software packages, including
SVG, CSS, and CGI with back-end C-compiled binaries and
Perl scripts that generate the graphics dynamically. This
interactive web-based software tool has turned a process
of manually converting and charting data, which required
weeks of work and extensive use of paper charts, into an
entirely automated, paperless process that generates results
in minutes, allowing the user to analyze long-term data
with unprecedented efficiency. It can be extended to handle
multiple feature trends, such as ST level, QRS width, etc.
or correlation plots (e.g. QRS width vs. heart rate), where
regions of interest need visual verification, and may also be
adapted to other similar physiological signals.

0276-6547/04 $20.00 © 2004 IEEE

1. Introduction

Pre-clinical cardiovascular studies at MIT’s Department
of Biology require a thorough trend analysis of ECG-
derived parameters such as heart rate, ST-segment
amplitude relative to the isoelectric point, arrhythmias, etc.
Utilizing a system for high-throughput data acquisition as
a platform [1], we devised a web-based visualization tool
providing an interactive rapid data mining capability. This
tool permits intuitive ’point-and-click’ usage to explore vast
quantities of data with ease and speed. We use a multi-scale
graphical data representation in which a top panel contains
averaged data with each point representing approximately
10 minutes of averaged data; a middle panel contains the
10-minutes of instantaneous trend data comprising the point
selected from the top panel; and a bottom panel contains the
underlying ‘raw waveform’ (ECG data, in this case). We
currently utilize this tool in explorations of long-term heart
rate trends in pre-clinical subjects, but the visualization
paradigm is easily adapted to other derived parameters
or signals of interest. An example screen shot of the
visualization tool is shown in Figure 1.

2. Methods

2.1. XML-based web graphics: SVG

The need for web-based visualization tools has spawned
many graphics technologies over the past decade, two of
the most widely utilized being Flash and Java applets
(with Swing or AWT). The closed-source nature of Flash
precludes the design of a dynamic server graphics rendering
engine driven by a web client using CGI (Common
Gateway Interface). Though Java graphics can provide
sufficient power and flexibility to support dynamic web-
based graphics rendering (when properly integrated with
CGI engines), such an architecture is somewhat “heavy”
from a programming perspective. That is, one must
import many specialized modules and write customized
event handlers for point-and-click recognition in Java. We
are currently in the process of porting our code to Java,

Computers in Cardiology 2004;31:569-571.

| Previoiis

sl

Removs Annotations Pieyiots ; Nkt N B i

Figure 1. A sample multi-scale plot. The top panel shows
long-term heart rate with light and dark cycles. Each data
point represents 10 minutes of averaged heart rate. In the
middle panel is the instantaneous heart rate comprising the
10-minute averaged data point most recently clicked in the
top plot. The bottom plot shows the first segment of ECG
corresponding to the time of interest. The user may browse
the ECG chart with the previous and next buttons.

as the language does have some distinct flexibilities and
assets that will accommodate future software developments.
Nonetheless, we built our prototype using SVG, as we
found that it provided a solid foundation for our goals.
Given SVG’s native point-and-click integration with HTML
as well as its built-in zoom and pan functionality, we
recognized it as a robust technology for fast prototyping
of our web-based, point-and-click multi-scale visualization
paradigm. SVG is a subset of XML and relies a client-side
browser plug-in to perform the computationally intensive
task of SVG parsing and graphics rendering using the
client CPU rather than that of the server. Therefore the
server must only generate XML graphics primitives such as
coordinates of line segments and the corresponding URL to
call when that segment is clicked upon; the client’s browser
takes care of the graphics generation. The simplicity of
XML-encoded graphics and the allocation of rendering to
each client results in a maximally effective server that
accommodates multiple users simultaneously.

2.2. Multiple simultaneous users:
maintaining state

Consider the example in which two users are simultaneously

browsing different records. One client clicks on the n*”* data
point of record A’s long-term heart rate plot (top panel) and
another client clicks on the m*” point of record B. In each

case the respective middle panels load with the appropriate
ten minutes of instantaneous heart rate comprising the data
point selected; the lower panels load with the respective
first slices of ECG corresponding to the first several seconds
associated with the ten-minute segment of interest.

The ’previous’ and ’next’ buttons in the lower panel
allow the user to peruse the ECG waveform in a forward or
reverse sense from the selected point in time, or said another
way the tool maintains state for each user. However, since
multiple asynchronous users may be accessing records, the
burden of tracking state can be a cumbersome task. If we
require that the server perform state tracking, then it must
maintain a database of the IP address, record, and currently
active page number of each active user. Moreover, given
that HTTP is a connectionless protocol the server cannot
be aware of whether a client’s session is active any longer.
Therefore if we were to require that the server perform state
tracking, we would necessarily require either an explicit
logout signal from the client, which is an inconvenience
to the user - or we would require a ’garbage collection’
mechanism to clear database entries that had not been
updated within a specified time window.

As a simpler alternative to imposing state tracking on the
server, we can utilize distributed state tracking by forcing
the client to maintain state. Programmatically such an
architecture involves wrapping the SVG code within HTML
that has Java-Script variables initialized by the client’s
browser. Therefore each subsequent request from the user
will send to the server the Java-Script state variables via
CGI to “remind” the server of that client’s state, from which
the server can generate dynamically an appropriate SVG-
encoded graphic with new state variables.

2.3. Parallel computing environment for
time-averaged chart generation

Each of the 16 channels in our pre-clinical mouse lab
is sampled at an effective sampling rate of 2kHz. With
this high data throughput and our need to perform ’on-the-
fly’ algorithmic analysis of the data comes an extraordinary
burden on the server CPU and I/O controllers. As we
have continued to add more algorithms the demand on the
main server has exceeded its capabilities, and we therefore
decided to provide additional servers operating in parallel
with the main server. One of the parallel servers is
constantly monitoring the main server for new 10-minute
segments of data. Upon recognizing that new data is ready,
this second server runs an algorithm to calculate the average
heart rate of that 10-minute data segment and creates an
SVG-encoded trend plot graphic with the averaged heart
rate points. This plot is then placed in the proper location
on the main server for access via the web.

3. Results

In our original quest to visualize vast data sets in an
intuitive manner, we utilized several software packages
including Matlab and Microsoft Excel. These software
packages permitted us to format data and create charts,
but the memory limitations of these programs relegated
our efforts to small data slices that we then printed and
collated into large notebooks for visual data mining. Aside
from wasting a substantial amount of paper, the logbooks
were tedious to prepare, requiring a week or more of
manual effort per record. Even with this effort invested we
found that the resulting visual preparation was inadequate
for our needs. We sought to take a “mile high” view
of heart rate trends for a record, then zoom in on local
instantaneous heart rate features at the corresponding time,
and finally to view the underlying ECG waveform at the
time point of interest. Such an approach was impractical,
if not impossible, with our paper logbooks. (Our ECG
data was collected at a rate of over 2kHz per subject and
some subjects contain data collected for over 7 weeks
continuously.) Moreover, reviewing data with remote
collaborators was impossible without either having our
collaborators go through the same laborious paper printing
and collation effort we endured or printing multiple copies
ourselves then mailing them.

Upon completion of our prototype for interactive data
mining, we could share results immediately and visually via
the web with authorized collaborators. In our multi-scale
architecture the top panel shows a 10-minute averaged trend
plot; the middle shows the instantaneous 10-minute trend
comprising the selected point from the top plot; and the
lower panel shows the ECG waveform. Utilizing SVG we
created an intuitive point-and-click environment in which
clicking on a point of interest in the top panel generates
the corresponding instantaneous heart rate and ECG plots
in the middle and lower panels, respectively. Clicking on
any point in the instantaneous heart rate plot (middle panel)
forwards the ECG signal (lower panel) to the corresponding
point in time. Utilizing this method we may quickly identify
false positives, missed beats, arrthythmias and other rate-
based cardiac phenomena of interest.

4. Discussion

With the ability to identify events of interest visually
using our multi-scale plots comes the foundation for
creating algorithms for semi-automated detection of such
events. Existing Holter-like software, such as that created
by Dorn et al [2] utilizes a similar paradigm to performs
intelligent pre-processing of data to detect probable events
of interest. The user may then annotate the events manually,
providing the ultimate say as to how the pre-processing
algorithm performed. Such a system accounts for the

571

impossibility of absolutely perfect automated detection
while making a best effort to relieve the relieve the
researcher of classifying the entire record manually.

5. Conclusion

In Tufte’s description of graphical excellence [3], he
says that graphical displays should: induce the viewer to
think about the substance rather than about methodology,
graphic design, the technology of graphic production or
something else and ... reveal the data at several levels
of detail, from a broad overview to a fine structure.
With Tufte’s recommendations in mind we created with
an architecture that is extremely intuitive, using the now-
familiar point-and-click capabilities of modern software.
The manner in which the graphics are generated is complex,
utilizing a distributed state machine approach to handle
multiple simultaneous users, dynamic generation of SVG-
encoded graphics through CGI, and a parallel computing
environment to perform the computationally intensive task
of generating "high-level’ long-term trend plots. A user of
the software, however, need not worry about the manner
in which the graphics are generated; he may focus on his
intended task of interpreting the graphics.

Graphical presentation is a ubiquitous part of data
analysis, and yet it is cuambersome and all too often occupies
many hours and often ultimately yields unwieldy results.
With our multi-resolution interactive web-based plots we
have automated the requisite graphical presentation of vast
amounts of data in a manner that presents the user with a
consistent look and feel while empowering the user with
tremendous interactive data mining capabilities.

References

[1] Oefinger M, Moody G, Krieger M, Mark R. System for
remote multi-channel real-time monitoring of ecg via the
internet. Computers in Cardiology 2004;.

[2] Dorn R, Jager F. Semia: semi-automatic interactive graphic
editing tool to annotate ambulatory ecg records. Computer
Methods and Programs in Biomedicine 2004;75,235-249.

[3] Tufte E. The Visual Display of Quantitative Information.
Graphics Press, 2001.

Address for correspondence:

Matthew Oefinger

Laboratory for Computational Physiology

MIT Department of Electrical Engineering & Computer Science
Rm E25-505, 45 Carleton St.,

Cambridge MA 02142 USA

oefinger@mit.edu

This research was sponsored by NIH grant ##O1HL66105

