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Abstract

The 2010 PhysioNet Challenge was to predict the last

few seconds of a physiological waveform given its previous

history and M-1 different concurrent physiological record-

ings. A robust approach was implemented by using a bank

of adaptive filters to predict the desired channel. In all, M

channels (the M-1 original signals, and 1 signal derived

from the previous history of the target signal) were used

to estimate the missing data. For each channel, a Gradi-

ent Adaptive Lattice Laguerre filter (GALL) was trained to

estimate the desired channel. The GALL filter was cho-

sen because of its fast convergence, stability, and ability

to model a long response using relatively few parameters.

The prediction of each of the channels (the output of each

of the GALL filters) was then linearly combined using time-

varying weights determined through a Kalman filter. This

approach is extensible to recordings with any number of

signals, other types of signals, and other problem domains.

The code for the algorithm is freely available at PhysioNet

under the GPL.

1. Introduction

The estimation of a missing signal from a multi-channel

physiological recording has many useful practical applica-

tions. Due to the close relationship between signal esti-

mation, forecasting, and filtering, it is possible to apply a

successful strategy from one scheme to another. In addi-

tion, residual analysis may provide tools for determining

how multi-channel signals are related, segmenting regions

that are locally stationary, estimating signal quality, and

detecting changes on the state of a system.

The algorithm described in this paper was developed for

the PhysioNet 2010 Challenge [1]. The challenge con-

sisted of an N × M measurement matrix

X = [x1 x2 . . . xM] (1)

where each column, xi, represents a N × 1 channel. The

channel to be estimated, the target channel xT, was the

channel where the last L sample points of the original sig-

nal, xref , have been zeroed out

xT [n] =

{

xref [n] if 1 ≤ n ≤ N−L

0 otherwise.
(2)

Thus, given (2) and an estimate (or reconstruction) of the

missing signal, θ (a N × 1 vector), the first cost function

defined for the challenge was

Q1 = 1 −
mse(θ,xref )

var(xref )
(3)

where mse(·, ·) is the mean square error between two vec-

tors, and var(·) is the biased sample variance (both the

mean square error and the variance were taken over the

last L points). The second cost function was defined as

Q2 =
cov(θ,xref )

√

var(θ) · var(xref )
(4)

where cov(·, ·) is the sample covariance (the sample vari-

ances and covariances were calculated over the last L

points). Both cost functions were bounded between 0 and 1
(negative values were set to 0). The PhysioNet 2010 chal-

lenge consisted of maximizing the two cost functions: (3)

and (4), as a function of θ.

A robust multi-channel adaptive filtering approach to the

estimation of the missing signal was developed based on

several key features. The adaptive filters were optimized

with a forgetting factor in order to attempt to control for

the non-stationary conditions of the problem. An infinite

impulse response adaptive filter, the Gradient Adaptive La-

guerre Latice (GALL) [3], was used to train each channel

on the target signal. Some of the useful features of this

filter are: guaranteed stability, fast convergence, low num-

ber of parameters (relative to finite impulse response filter),

modular (order-recursive) structure, and ability to model a

signal with a frequency roll-off. The individual estimates

from each channel were combined through a Kalman filter

[5]. This allowed for a robust estimation in which the per-

formance could degrade gracefully as the number of chan-

nels present decreases. Finally, the most computationally
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intensive part, the optimization of the forgetting factor for

individual estimation, was implemented in a parallel fash-

ion, with the filters being applied recursively after the op-

timization.

2. Methods

2.1. Dataset

The dataset provided by PhysioNet consisted of 300

measurement matrices, X , with varying number of chan-

nels M recorded from bedside intensive care unit patient

monitors [1]. The dataset was partitioned into three sets

of 100 measurement matrices. Set A was a training set

which included the entire reference signal, xref . Set B was

a more restricted training set, with no reference signal dur-

ing the gap but with access to the individual cost function

scores (Q1 and Q2) by submitting the reconstructions, θ,

to PhysioNet. For the last set (C) , performance informa-

tion was unavailable during the gap region. Competitors

were graded only on the reconstructions submitted for set

C.

The measurement matrix X consisted of 6, 7, or 8 chan-

nels sampled at 125 Hz for 10 minutes (N = 75, 000). The

number of missing points to be reconstructed was 3750

which was the last 30 seconds of the missing signal. So

that L = 3, 750, with xT [n] = 0 for N − L < n ≤ N .

2.2. Reconstruction overview

The reconstruction algorithm described in this paper

used M channels, with the target channel , xT [n] , replaced

by a 30 second time-delayed version of itself

xTS [n] ≡

{

0 if 1 ≤ n ≤ L

xT [n − L] otherwise.
(5)

In this way the available history of the missing signal was

incorporated into the estimation scheme and treated as an-

other channel.

The overall estimation scheme consisted of two stages

(Figure 1). In the first stage, M reconstruction signals,

θm, were estimated from each of the M channels by us-

ing a bank of M GALL filters [3]. These M reconstruc-

tions were then linearly combined using a Kalman filter [5]

to obtain the final reconstruction for that measurement, θ.

Further detail of the algorithm can be obtained by studying

the MATLAB code implementing the algorithm (available

for free under the GPL [2] at http://www.physionet.org).

2.3. Individual reconstructions

The GALL adaptive filter consists of orthogonalizing

and joint sections (Figure 2), in which delays are replaced

Figure 1. Reconstruction Overview.

by Laguerre transfer functions

L(z) =
z−1 − a

1 − az−1
(6)

and where the transfer function’s pole, a, is constant across

the entire filter (note that for a = 0 the Laguerre transfer

function becomes a simple unit delay). The input to the

GALL filter was any of the M channels (with xT replaced

by xTS), with the filter’s desired response set to xT.

Figure 2. GALL Overview.

The algorithm for training the GALL filter consisted of

three major design parameters: P (the number of lattice

stages), a (the pole location), and λ (the forgetting factor)

[3, 5]. The number of lattice stages, P , was set to 35 and

held fixed for all measurements and all signals. The spe-

cific value of P was chosen based on preliminary visual

inspection of the maximum number of peaks in the spectra

of a subset of the signals. The two other parameters, λ and

a, were jointly optimized on a per signal, per record basis

using the following cost function

λopt, aopt = arg min
λ,a

rmse(θm(λ,a),xref ) (7)

where rmse(·, ·) is the root mean square error. The opti-

mization function (7) was calculated over the penultimate
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30 seconds (N − 2L ≤ n ≤ N −L) so that this optimiza-

tion was performed individually over all 300 records. The

optimization function (7) is related to the cost function (3),

which was found to be, in general, the most stringent cri-

terion of the two cost functions (3) and (4). Although the

joint optimization of (7) was by far the most computational

demanding aspect of the algorithm, it was implemented in

a parallel fashion using an eight core 2.0 GHz multiproces-

sor machine (taking on average around 3 minutes per each

10 minute multi-channel record). In addition, (7) could

possibly be modified for an online (recursive) implemen-

tation by tracking the minimum over a local area after an

initial global search (or after some heuristic initialization).

After the GALL’s three major design parameters have

been selected, the adaptive parameters of the filter (filter

weights) were allowed to adapt to the desired response,

xT. All of the filters’ adaptive parameters were frozen at

n = N − L (last training sample) in order to generate

the individual reconstructions for the missing section (N−

L < n ≤ N ).

2.4. Combined reconstructions

The second and final stage of the reconstruction algo-

rithm consisted of combining the individual sample by

sample reconstructions, θm[n], in order to generate an im-

proved sample-by-sample final estimate of the missing sig-

nal, θ[n]. The M × N available reconstructions, Θ, were

used as inputs to an unforced Kalman filter [5] where the

vector of M × 1 weights, ẇ, was defined as the filter’s

states

ẇ[n] = [w1[n] w2[n] · · · wM [n]]T (8)

Θ[n] = [θ1[n] θ2[n] · · · θM [n]]T (9)

θ[n] ≡ y[n] = Θ[n]T · ẇ[n] (10)

The weight updates of the Kalman filter were calculated

using the simple set of equations

ε[n] = xT [n] − θ[n] (11)

g[n] =
λ2

kK[n − 1]Θ[n]

Θ[n]T K[n − 1]Θ[n] + 1
(12)

ẇ[n] = λK ẇ [n − 1] + g[n]ε[n] (13)

K[n] = λ2

KK[n − 1] − λkg[n]Θ[n]T K[n − 1] (14)

where λK is a forgetting factor between 0 and 1 for the

Kalman filter, and K[n] is the M × M state error corre-

lation matrix. The filter design parameter, λK , was deter-

mined by finding the optimal λK in similar fashion to the

λ from the individual GALL reconstructions as described

Table 1. Scoring Results for the entire dataset

Set A Set B Set C Mean

Q1 68.0 74.8 70.5 71.1

Q2 80.9 84.9 84.0 83.2

Mean 74.5 79.9 77.7

in the previous session. All of the Kalman filter’s adaptive

weights were frozen at n = N − L (last training sample)

in order to generate the final reconstruction for the missing

section (N − L < n ≤ N ).

3. Results

The algorithm results using the costs functions (3) and

(4) are summarized on Table 1. Figures 3 and 4 show

examples of the algorithm performance applied to a spe-

cific case where the signal to be reconstructed was a finger

plethysmogram (PLETH) with the extra channels available

being: arterial blood pressure (ABP), central venous pres-

sure (CVP), respiration (RESP), electrocardiogram leads I,

II and AVR (only ECG II is shown).

4. Discussion and conclusions

This paper describes an algorithm for estimating a miss-

ing channel from multiple concurrent signals using a com-

bination of adaptive filters with forgetting factor to attempt

to control for non-stationarities in the environment. The fi-

nal score for the PhysioNet challenge was 0.71 (using Q1)

and 0.83 (using Q2).

The algorithm described here can scale and shows signs

of graceful degradation with respect to the number of chan-

nels being used. Significant improvements could be ob-

tained by generating extra channels that incorporate any

a priori knowledge of non-linear mapping among the orig-

inal recordings. For instance, the estimation of the respira-

tion signal may be improved by using an additional chan-

nel constructed from the ECG-Derived Respiration algo-

rithm [4]. It is possible that the whole process may be im-

plemented in an online recursive fashion after some initial

optimization of the adaptive filters’ design parameters.
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Figure 3. Example of individual reconstructions.
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Figure 4. Example of final reconstruction with degradation.
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