
Robust Heart Rate Estimation from Noisy Phonocardiograms

David B Springer1, Thomas Brennan2, Jens Hitzeroth3, Bongani M Mayosi3, Lionel Tarassenko1,
Gari D Clifford1,4

1 University of Oxford, Oxford, UK
2 Massachusetts Institute of Technology, Cambridge, USA

3 University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
4 Emory University, Atlanta, USA

Abstract

Accurate heart rate estimation is a fundamental process
when analysing phonocardiograms (PCGs). While this is
trivial in noise-free recordings, it becomes a difficult task
in PCGs corrupted by various noise sources. While nu-
merous PCG-based heart rate estimation techniques have
been explored in the literature, no comparison between
these techniques has been performed to identify the best-
performing method in noisy recordings.

This paper evaluates various denoising, normalisation,
envelope extraction and heart rate estimation techniques
on 585 noisy recordings made using four different de-
vices. The best-performing algorithm correctly estimated
the heart rate in 471 (80.5%) of these PCGs, while cor-
rectly estimating the heart rate in 86% of the PCGS from
a separate (publicly available) test dataset.

1. Introduction

An essential process in the automatic analysis of phono-
cardiograms (PCGs) is heart rate (HR) estimation. This is
difficult in noisy PCGs due to the fact that noise sources,
such as motion artifacts and speech and lung sounds, in-
terfere with the heart sounds of interest in both the time
and frequency domains [1]. Furthermore, PCGs recorded
by non-experts, such as in the case of mobile-phone based
applications, are likely to be of lower quality, necessitating
robust HR estimation.

Many different HR estimation techniques have been ex-
plored in the literature. However, no comparison has been
made between these techniques to find the best-performing
method. This paper compares a number of pre-processing,
signal envelope detection, normalisation and HR estima-
tion algorithms on noisy heart sound recordings from mul-
tiple data sources to find the best-performing algorithm
for accurate estimation of the HR from PCGs with a large
amount of noise contamination.

The most common HR estimation technique when us-
ing the PCG is peak detection in the autocorrelation after
various transformations [2–4].

A critical step for the derivation of the autocorrelation
is signal envelope extraction. The three envelope extrac-
tion techniques that have been used extensively are the ho-
momorphic envelogram [2, 5], the Hilbert envelope [3, 6]
and the average normalised Shannon energy [7]. A fourth,
classic method for envelope extraction, based on full-wave
rectification and low-pass filtering (FWR-LPF) was inves-
tigated in this paper.

Methods for HR estimation in the autocorrelation of
PCG signals include single peak detection [2] and comput-
ing the periodicity using singular value decomposition [3].
In addition, multiple peak detection was investigated.

Wavelet denoising has been found to be a suitable
method for removing noise contamination from PCG sig-
nals [6]. However, there is limited agreement on the op-
timal wavelet to use when analysing PCGs. The Morlet
wavelet [8], Daubechies wavelet family [6, 9] and Symlet
wavelet family [10] have all been motivated for PCG anal-
ysis.

Normalisation of PCGs is performed to limit the vari-
ation between recordings from different patients and dif-
ferent recording devices. Methods include division by the
maximum amplitude in the signal [4, 10], subtracting the
mean and dividing by the standard deviation of the sig-
nal [7] or dividing by a percentile value of the signal [2].

This paper investigates the combination of these param-
eters and methods that yield the best-performing HR esti-
mation algorithm.

2. Methods

2.1. Datasets

Three different data sets, using a range of six different
recording devices, were used in this study.
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Figure 1. Hand-made stethoscope with hands-free kit at-
tached and plugged into an iPhone 3G.

The first data set contains recordings from 150 patients
from the cardiology clinic at the Groote Schuur hospital
in Cape Town, South Africa1. These patients had var-
ious heart conditions, including biological and artificial
valve replacements, congestive heart failure, pacemakers
and congenital disorders. All recordings were made by an
untrained research assistant in order to replicate the role of
an untrained health care worker.

PCG recordings were made using three different de-
vices: the first was a 3M Littmann 3200 electronic stetho-
scope; the second PCG recording device used was an
iPhone 3G mobile phone; and the third was a a Nokia 3110
Classic mobile phone. Both mobile phones were equipped
with a hand-made stethoscope attachment, shown in Fig-
ure 1. This stethoscope attachment was made by placing
the microphone of a standard iPhone hands-free kit into the
neck of a metal egg-cup, based on the work of Kuan [11].

The reference HR for each recording was derived by
finding the median time between peaks in synchronous
photoplethysmography (PPG) data recorded with each
PCG recording using a Nonin Onyx II 9560 finger pulse
oximeter.

The second data set consisted of 405 synchronous PCG
and ECG recordings from 123 de-identified adult patients
attending the Massachusetts General Hospital for cardiac
screening or in-home recordings of people suffering from
mitral valve prolapse (MVP), 83 of whom were found to
have murmurs [12]. The recordings were made using a
Welch-Allyn Meditron Elite electronic stethoscope. The
reference HR for each PCG signal was found using a Pan-
Tomkins detector in the synchronous ECG signals [13].

1This study was approved by the Human Research Ethics commit-
tee, Health Science Faculty, University of Cape Town (HREC REF:
568/2010)

Finally, the test dataset in this study is a publicly avail-
able dataset [14], consisting of 111 annotated recordings
from two sources: twenty-one normal recordings using the
iStethoscope Pro iPhone application and 90 normal record-
ings using the DigiScope device. The reference HR from
these recordings is found by computing the median time
between the manually annotated first heart sound positions
from each recording.

2.2. Data Exclusion

To ensure accurate reference HR estimates, poor-quality
PPG (from the Cape Town dataset) and ECG signals (from
the Massachusetts dataset) were excluded.

The quality of the reference PPG signals used in the mo-
bile stethoscope dataset was found by using the qSQI al-
gorithm [15]. In order to ensure absolute precision of the
reference HR estimates in this study, any PPG signal with a
signal quality value of below 0.9 was excluded. This led to
the exclusion of six Littmann, four iPhone and five Nokia
recordings.

The quality of the ECG signals used in the MIT database
was computed using the method derived by [16]. This clas-
sifier was trained using the original data used by the re-
searchers, being similar to the data used in this study. Us-
ing this classifier, 108 ECGs were found to be of low qual-
ity. From the remaining recordings, 150 were randomly
selected in order to match the number of recordings from
the mobile stethoscope dataset.

2.3. Analysis Overview

This analysis performed an exhaustive search over 41
different wavelet denoising parameters, four envelope de-
tection methods, five normalisation thresholds and three
HR estimation techniques to derive a HR estimate for each
recording. This lead to a total of 14,760 different combina-
tions. These steps are described in the following sections.

2.4. Pre-processing

All PCG recordings were downsampled to 1000 Hz us-
ing a polyphase anti-aliasing filter. The frequency content
of the fundamental heart sounds is below 500 Hz [1] and
hence the Nyquist-Shannon sampling criterion was satis-
fied.

As discussed in Section 1, wavelet denoising has been
shown to be advantageous for PCG analysis. However,
there is little agreement on the optimal wavelet and decom-
position level to use. For that reason, a number of wavelets
(Morlet, Daubechies 4-10, Symlet 18 and Biorthogonal
2.8) and decomposition levels (3-6) were used to de-
compose the signal using the discrete wavelet transform
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Table 1. Results on training sets, showing the best-performing algorithm parameters on each set, the total number of
recordings in each set and the number of recordings within the defined tolerance (± 5 bpm)

Dataset Total
PCGs Wavelet Decomposition

Level
Normalisation

Level (%)
Envelope
Detection

HR
Estimation

PCGs within
tolerance

Nokia 145 Daubechies 4 4 95 Hilbert Single Peak 120
iPhone 146 No Wavelet NA 95-97 FWR-LPF Single Peak 107
Littmann 144 Biorthogonal 2.8 3 100 Hilbert Single Peak 122

MIT 150 Daubechies 8 4 100 Hilbert Single Peak 144
Daubechies 10 4 99 Hilbert Single Peak 144

Combined 585 Biorthogonal 2.8 3 95 Hilbert Single Peak 471

(DWT)2, and then reconstructing the signal with the ex-
clusion of wavelet approximations and details outside of
the chosen decomposition level. The effect of this was the
filtering out of frequencies in the signal outside the desired
frequency range.

This led to a total of 41 different pre-processing meth-
ods; 40 using wavelet decomposition and one with no
wavelet denoising.

2.5. Envelope Detection

As discussed in Section 1, four different envelope ex-
traction methods were investigated. These were: the FWR-
LFP method3, the extraction of the Hilbert Envelope [5],
homomorphic filtering [2] and finding the average Shan-
non energy envelope [7].

2.6. Normalisation and Autocorrelation

It was decided to follow the normalisation process used
by [2] where the normalised envelope is found by first sub-
tracting the median and then dividing by a percentile value
of the absolute value of the signal. In order to optimize the
normalisation percentile value, a range from 95 to 100 %
was tested.

Thereafter, the autocorrelation waveform was com-
puted. The autocorrelation is the cross-correlation of a
signal with itself, which accentuates repeating patterns
in noisy signals. This is useful when analysing a semi-
periodic signal such as the PCG.

2.7. Heart Rate Estimation Methods

Three HR estimation algorithms were tested. The first
method was the detection of the first salient peak in the
autocorrelation [2]. This method of HR estimation com-
putes the maximum peak within in a permissible range

2In the case of the Morlet wavelet, the continuous wavelet transform
was used as the discrete wavelet transform is not possible.

3This was a 20 Hz cut-off, second-order, zero-phase, Butterworth low-
pass filter

(dictated by realistic values of HR) within the autocorre-
lation function. The HR limits used in this study were 30
- 140 beats per minute (bpm), as resting HRs outside of
this range were not expected. The HR, hr, was calculated
using:

hr = 60/lagpeak bpm (1)

where lagpeak is the lag time to the detected peak in the
autocorrelation.

The second HR estimation method was to find multiple
peaks in the autocorrelation. This HR estimation algorithm
is an extension of the previous method. As before, the lo-
cation of the peak with the greatest amplitude within the
permissible range in the autocorrelation is found. There-
after, the largest peak within a permissible lag from the
previously found peak location is found. In order to com-
pute the optimal number of peaks to find, a range of three
to nine peaks was used. The HR is found by computing the
median lag between the identified peaks and using Equa-
tion 1.

Finally, a HR estimation method, introduced by [3],
finds windows of the autocorrelation function that are most
similar using singular value decomposition (SVD) and
bases the HR on the width of these windows.

3. Results

HR monitors should be able to compute the HR to within
10 % of the reference HR, or within five beats per minute,
whichever is larger [17]. Therefore, the most successful
algorithm was that which estimated the HR within these
bounds for the highest number of recordings.

The combinations of parameters which led to the high-
est number of correctly derived HRs for each data set are
shown in Table 1. In order to find the best-performing al-
gorithm across all datasets, the best-performing algorithm
on all 585 training recordings was found. This is shown in
the last line of Table 1.

The results from each algorithm from Table 1 on the test
set are shown in Table 2.

615



Table 2. Results on test sets, showing number of PCGs within ± 5 bpm tolerance using best-performing algorithm from
each training set (e.g., “Nokia” heading refers to the best-performing algorithm found using the Nokia dataset in Table 1).

PCGs within ± 5 bpm tolerance using best-performing algorithm from each training set:
Dataset Total PCGs Nokia iPhone Littmann MIT Combined

iStethoscope 21 20 18 20 20 20 19
Digiscope 90 74 70 76 71 70 76

4. Discussion

Single peak detection along with the Hilbert envelope
extraction led to the best HR estimates in all but one of
the training datasets, illustrating the superiority of these
methods.

Lower percentage values for normalisation for the Nokia
and iPhone datasets are expected, due to their higher sus-
ceptibility to noise spikes when using a low-cost stetho-
scope.

The best-performing algorithm on the “combined” train-
ing set would be most generalisable to new datasets, and as
expected, performed as well as other algorithms on the test
sets. Therefore, it can be concluded that this method, using
single peak detection in the autocorrelation waveform after
preprocessing and normalisation yields the most accurate
HR estimates across a variety of PCGs.
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